Do you want to publish a course? Click here

A Survey About Nothing: Monitoring a Million Supergiants for Failed Supernovae

59   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Extragalactic transient searches have historically been limited to looking for the appearance of new sources such as supernovae. It is now possible to carry out a new kind of survey that will do the opposite, that is, search for the disappearance of massive stars. This will entail the systematic observation of galaxies within a distance of 10 Mpc in order to watch ~10^6 supergiants. Reaching this critical number ensures that something will occur yearly, since these massive stars must end their lives with a core collapse within ~10^6 years. Using deep imaging and image subtraction it is possible to determine the fates of these stars whether they end with a bang (supernova) or a whimper (fall out of sight). Such a survey would place completely new limits on the total rate of all core collapses, which is critical for determining the validity of supernova models. It would also determine the properties of supernova progenitors, better characterize poorly understood optical transients, such as eta Carina-like mass ejections, find and characterize large numbers of Cepheids, luminous blue variables and eclipsing binaries, and allow the discovery of any new phenomena that inhabit this relatively unexplored parameter space.

rate research

Read More

Sgr A* is extra-ordinarily dim in all wavelengths requiring a very low accretion rate at the present time. However, at a radial distance of a fraction of a parsec from Sgr A*, two rings populated by young massive stars suggest a recent burst of star formation in a rather hostile environment. Here we explore two ways of creating such young stellar rings with a gaseous accretion disk: by self-gravity in a massive disk, and by capturing old low mass stars and growing them via gas accretion in a disk. The minimum disk mass is above 10^4 Msun for the first mechanism and is few tens times larger for the second one. The observed relatively small velocity dispersion of the stars rules out disks more massive than around 10^5 Msun: heavier stellar or gas disks would warp each other by orbital precession in an axisymmetric potential too strongly. The capture of old stars by a disk is thus unlikely as the origin of the young stellar disks. The absence of a massive nuclear gas disk in Sgr A* now implies that the disk was either accreted by the SMBH, which would then imply almost a quasar-like luminosity for Sgr A*, or was consumed in the star formation episode. The latter possibility appears to be more likely on theoretical grounds. We also consider whether accretion disk plane changes, expected to occur due to fluctuations in the angular momentum of gas infalling into the central parsec of a galaxy, would dislodge the embedded stars from the disk midplane. We find that the stars leave the disk midplane only if the disk orientation changes on time scales much shorter than the disk viscous time.
Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae, they do produce transients that will be observed by upcoming ground-based surveys and NASA satellites. Here we present the first radiation-hydrodynamics calculations of the spectra and light curves from three of these failed supernovae: supernovae with considerable fallback, accretion induced collapse of white dwarfs, and energetic helium flashes (also known as type .Ia supernovae).
Supernova (SN) rates serve as an important probe of star-formation models and initial mass functions. Near-infrared seeing-limited ground-based surveys typically discover a factor of 3-10 fewer SNe than predicted from far-infrared (FIR) luminosities owing to sensitivity limitations arising from both a variable point-spread function (PSF) and high dust extinction in the nuclear regions of star-forming galaxies. This inconsistency has potential implications for our understanding of star-formation rates and massive-star evolution, particularly at higher redshifts, where star-forming galaxies are more common. To resolve this inconsistency, a successful SN survey in the local universe must be conducted at longer wavelengths and with a space-based telescope, which has a stable PSF to reduce the necessity for any subtraction algorithms and thus residuals. Here we report on a two-year Spitzer/IRAC 3.6 um survey for dust-extinguished SNe in the nuclear regions of forty luminous infrared galaxies (LIRGs) within 200 Mpc. The asymmetric Spitzer PSF results in worse than expected subtraction residuals when implementing standard template subtraction. Forward-modeling techniques improve our sensitivity by ~1.5 magnitudes. We report the detection of 9 SNe, five of which were not discovered by optical surveys. After adjusting our predicted rates to account for the sensitivity of our survey, we find that the number of detections is consistent with the models. While this search is nonetheless hampered by a difficult-to-model PSF and the relatively poor resolution of Spitzer, it will benefit from future missions, such as Roman Space Telescope and JWST, with higher resolution and more symmetric PSFs.
We present updated results of the Large Binocular Telescope Search for Failed Supernovae. This search monitors luminous stars in 27 nearby galaxies with a current baseline of 11~yr of data. We re-discover the failed supernova (SN) candidate N6946-BH1 as well as a new candidate, M101-OC1. M101-OC1 is a blue supergiant that rapidly disappears in optical wavelengths with no evidence for significant obscuration by warm dust. While we consider other options, a good explanation for the fading of M101-OC1 is a failed SN, but follow-up observations are needed to confirm this. Assuming only one clearly detected failed SN, we find a failed SN fraction $f = 0.16^{+0.23}_{-0.12}$ at 90 per~cent confidence. We also report on a collection of stars that show slow ($sim$decade), large amplitude ($Delta L/L > 3$) luminosity changes.
37 - Martin Kunz n 2006
Observed data is often contaminated by undiscovered interlopers, leading to biased parameter estimation. Here we present BEAMS (Bayesian Estimation Applied to Multiple Species) which significantly improves on the standard maximum likelihood approach in the case where the probability for each data point being `pure is known. We discuss the application of BEAMS to future Type Ia supernovae (SNIa) surveys, such as LSST, which are projected to deliver over a million supernovae lightcurves without spectra. The multi-band lightcurves for each candidate will provide a probability of being Ia (pure) but the full sample will be significantly contaminated with other types of supernovae and transients. Given a sample of N supernovae with mean probability, P, of being Ia, BEAMS delivers parameter constraints equal to NP spectroscopically-confirmed SNIa. In addition BEAMS can be simultaneously used to tease apart different families of data and to recover properties of the underlying distributions of those families (e.g. the Type Ibc and II distributions). Hence BEAMS provides a unified classification and parameter estimation methodology which may be useful in a diverse range of problems such as photometric redshift estimation or, indeed, any parameter estimation problem where contamination is an issue.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا