No Arabic abstract
We present updated results of the Large Binocular Telescope Search for Failed Supernovae. This search monitors luminous stars in 27 nearby galaxies with a current baseline of 11~yr of data. We re-discover the failed supernova (SN) candidate N6946-BH1 as well as a new candidate, M101-OC1. M101-OC1 is a blue supergiant that rapidly disappears in optical wavelengths with no evidence for significant obscuration by warm dust. While we consider other options, a good explanation for the fading of M101-OC1 is a failed SN, but follow-up observations are needed to confirm this. Assuming only one clearly detected failed SN, we find a failed SN fraction $f = 0.16^{+0.23}_{-0.12}$ at 90 per~cent confidence. We also report on a collection of stars that show slow ($sim$decade), large amplitude ($Delta L/L > 3$) luminosity changes.
We present new Large Binocular Telescope, Hubble Space Telescope, and Spitzer Space Telescope data for the failed supernova candidate N6946-BH1. We also report an unsuccessful attempt to detect the candidate with Chandra. The ~300,000 Lsun red supergiant progenitor underwent an outburst in 2009 and has since disappeared in the optical. In the LBT data from May 2008 through October 2019, the upper limit on any increase in the R-band luminosity of the source is 2000 Lsun. HST and Spitzer observations show that the source continued to fade in the near-IR and mid-IR, fading by approximately a factor of 2 between October 2015 and September 2017 to 2900 Lsun at H band (F160W). Models of the spectral energy distribution are inconsistent with a surviving star obscured either by an ongoing wind or dust formed in the transient. The disappearance of N6946-BH1 remains consistent with a failed supernova.
Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae, they do produce transients that will be observed by upcoming ground-based surveys and NASA satellites. Here we present the first radiation-hydrodynamics calculations of the spectra and light curves from three of these failed supernovae: supernovae with considerable fallback, accretion induced collapse of white dwarfs, and energetic helium flashes (also known as type .Ia supernovae).
Do charge modulations compete with electron pairing in high-temperature copper-oxide superconductors? We investigated this question by suppressing superconductivity in a stripe-ordered cuprate compound at low temperature with high magnetic fields. With increasing field, loss of three-dimensional superconducting order is followed by reentrant two-dimensional superconductivity and then an ultra-quantum metal phase. Circumstantial evidence suggests that the latter state is bosonic and associated with the charge stripes. These results provide experimental support to the theoretical perspective that local segregation of doped holes and antiferromagnetic spin correlations underlies the electron-pairing mechanism in cuprates.
Theoretical studies suggest that a giant planet around the young star MWC 758 could be responsible for driving the spiral features in its circumstellar disk. Here, we present a deep imaging campaign with the Large Binocular Telescope with the primary goal of imaging the predicted planet. We present images of the disk in two epochs in the $L^{prime}$ filter (3.8 $mu m$) and a third epoch in the $M^{prime}$ filter (4.8 $mu m$). The two prominent spiral arms are detected in each observation, which constitute the first images of the disk at $M^prime$, and the deepest yet in $L^prime$ ($Delta L^prime=$12.1 exterior to the disk at 5$sigma$ significance). We report the detection of a S/N$sim$3.9 source near the end of the Sourthern arm, and, from the sources detection at a consistent position and brightness during multiple epochs, we establish a $sim$90% confidence-level that the source is of astrophysical origin. We discuss the possibilities that this feature may be a) an unresolved disk feature, and b) a giant planet responsible for the spiral arms, with several arguments pointing in favor of the latter scenario. We present additional detection limits on companions exterior to the spiral arms, which suggest that a $lesssim$4 M$_{Jup}$ planet exterior to the spiral arms could have escaped detection. Finally, we do not detect the companion candidate interior to the spiral arms reported recently by Reggiani et al. (2018), although forward modelling suggests that such a source would have likely been detected.
The Large Binocular Telescope Interferometer (LBTI) can perform Fizeau interferometry in the focal plane, which accesses spatial information out to the LBTs full 22.7-m edge-to-edge baseline. This mode has previously been used to obtain science data, but has been limited to observations where the optical path difference (OPD) between the two beams is not controlled, resulting in unstable fringes on the science detectors. To maximize the science return, we are endeavoring to stabilize the OPD and tip-tilt variations and make the LBTI Fizeau mode optimized and routine. Here we outline the optical configuration of LBTIs Fizeau mode and our strategy for commissioning this observing mode.