No Arabic abstract
Supernova (SN) rates serve as an important probe of star-formation models and initial mass functions. Near-infrared seeing-limited ground-based surveys typically discover a factor of 3-10 fewer SNe than predicted from far-infrared (FIR) luminosities owing to sensitivity limitations arising from both a variable point-spread function (PSF) and high dust extinction in the nuclear regions of star-forming galaxies. This inconsistency has potential implications for our understanding of star-formation rates and massive-star evolution, particularly at higher redshifts, where star-forming galaxies are more common. To resolve this inconsistency, a successful SN survey in the local universe must be conducted at longer wavelengths and with a space-based telescope, which has a stable PSF to reduce the necessity for any subtraction algorithms and thus residuals. Here we report on a two-year Spitzer/IRAC 3.6 um survey for dust-extinguished SNe in the nuclear regions of forty luminous infrared galaxies (LIRGs) within 200 Mpc. The asymmetric Spitzer PSF results in worse than expected subtraction residuals when implementing standard template subtraction. Forward-modeling techniques improve our sensitivity by ~1.5 magnitudes. We report the detection of 9 SNe, five of which were not discovered by optical surveys. After adjusting our predicted rates to account for the sensitivity of our survey, we find that the number of detections is consistent with the models. While this search is nonetheless hampered by a difficult-to-model PSF and the relatively poor resolution of Spitzer, it will benefit from future missions, such as Roman Space Telescope and JWST, with higher resolution and more symmetric PSFs.
Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from ten targets (~15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at ~1000--2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.
We conduct a 350 micron dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05-0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S_350 = 114-650 mJy and S/N > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust contents for a sample of 16 local DOGs that consists of 12 bump and 4 power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57-122 K and 22-35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of warm dust component are 3-34$times10^{7} M_odot$ and 0.03-2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason why DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.
A new class of X-ray binaries has been recently discovered by the high energy observatory, INTEGRAL. It is composed of intrinsically obscured supergiant high mass X-ray binaries, unveiled by means of multi-wavelength X-ray, optical, near- and mid-infrared observations, in particular photometric and spectroscopic observations using ESO facilities. However the fundamental questions about these intriguing sources, namely their formation, evolution, and the nature of their environment, are still unsolved. Among them, IGR J16318-4848 - a compact object orbiting around a supergiant B[e] star - seems to be one of the most extraordinary celestial sources of our Galaxy. We present here new ESO/VLT VISIR mid-infrared (MIR) spectroscopic observations of this source. First, line diagnostics allow us to confirm the presence of absorbing material (dust and cold gas) enshrouding the whole binary system, and to characterise the nature of this material. Second, by fitting broadband near to mid-infrared Spectral Energy Distribution - including ESO NTT/SofI, VLT/VISIR and Spitzer data - with a phenomenological model for sgB[e] stars, we show that the star is surrounded by an irradiated rim heated to a temperature of 3800-5500 K, along with a viscous disk component at an inner temperature of 750 K. VISIR data allow us to exclude the spherical geometry for the dust component. This detailed study will allow us in the future to get better constraints on the formation and evolution of such rare and short-living high mass X-ray binary systems in our Galaxy.
We present the discovery with Keck of the extremely infrared (IR) luminous transient AT 2017gbl, coincident with the Northern nucleus of the luminous infrared galaxy (LIRG) IRAS 23436+5257. Our extensive multi-wavelength follow-up spans ~900 days, including photometry and spectroscopy in the optical and IR, and (very long baseline interferometry) radio and X-ray observations. Radiative transfer modelling of the host galaxy spectral energy distribution and long-term pre-outburst variability in the mid-IR indicate the presence of a hitherto undetected dust obscured active galactic nucleus (AGN). The optical and near-IR spectra show broad 2000 km/s hydrogen, He I and O I emission features that decrease in flux over time. Radio imaging shows a fast evolving compact source of synchrotron emission spatially coincident with AT 2017gbl. We infer a lower limit for the radiated energy of 7.3 x 10^50 erg from the IR photometry. An extremely energetic supernova would satisfy this budget, but is ruled out by the radio counterpart evolution. Instead, we propose AT 2017gbl is related to an accretion event by the central supermassive black hole, where the spectral signatures originate in the AGN broad line region and the IR photometry is consistent with re-radiation by polar dust. Given the fast evolution of AT 2017gbl, we deem a tidal disruption event (TDE) of a star a more plausible scenario than a dramatic change in the AGN accretion rate. This makes AT 2017gbl the third TDE candidate to be hosted by a LIRG, in contrast to the so far considered TDE population discovered at optical wavelengths and hosted preferably by post-starburst galaxies.
Obscuration of quasars by accreted gas and dust, or dusty intervening galaxies, can cause active galactic nuclei (AGN) to be missed in optically-selected surveys. Radio observations can overcome this dust bias. In particular, radio surveys searching for HI absorption inform us on how the AGN can impact on the cold neutral gas medium within the host galaxy, or the population of intervening galaxies through the observed line of sight gas kinematics. We present the results of a HI absorption line survey at $0.4 < z < 1$ towards 34 obscured quasars with the Australian SKA Pathfinder (ASKAP) commissioning array. We detect three HI absorption lines, with one of these systems previously unknown. Through optical follow-up for two sources, we find that in all detections the HI gas is associated with the AGN, and hence that these AGN are obscured by material within their host galaxies. Most of our sample are compact, and in addition, are either gigahertz peaked spectrum (GPS), or steep spectrum (CSS) sources, both thought to represent young or recently re-triggered radio AGN. The radio spectral energy distribution classifications for our sample agree with galaxy evolution models in which the obscured AGN has only recently become active. Our associated HI detection rate for GPS and compact SS sources matches those of other surveys towards such sources. We also find shallow and asymmetric HI absorption features, which agrees with previous findings that the cold neutral medium in compact radio galaxies is typically kinematically disturbed by the AGN.