Do you want to publish a course? Click here

Self-gravitating accretion disk in Sgr A* few million years ago: was Sgr A* a failed quasar?

41   0   0.0 ( 0 )
 Added by Jorge Cuadra
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sgr A* is extra-ordinarily dim in all wavelengths requiring a very low accretion rate at the present time. However, at a radial distance of a fraction of a parsec from Sgr A*, two rings populated by young massive stars suggest a recent burst of star formation in a rather hostile environment. Here we explore two ways of creating such young stellar rings with a gaseous accretion disk: by self-gravity in a massive disk, and by capturing old low mass stars and growing them via gas accretion in a disk. The minimum disk mass is above 10^4 Msun for the first mechanism and is few tens times larger for the second one. The observed relatively small velocity dispersion of the stars rules out disks more massive than around 10^5 Msun: heavier stellar or gas disks would warp each other by orbital precession in an axisymmetric potential too strongly. The capture of old stars by a disk is thus unlikely as the origin of the young stellar disks. The absence of a massive nuclear gas disk in Sgr A* now implies that the disk was either accreted by the SMBH, which would then imply almost a quasar-like luminosity for Sgr A*, or was consumed in the star formation episode. The latter possibility appears to be more likely on theoretical grounds. We also consider whether accretion disk plane changes, expected to occur due to fluctuations in the angular momentum of gas infalling into the central parsec of a galaxy, would dislodge the embedded stars from the disk midplane. We find that the stars leave the disk midplane only if the disk orientation changes on time scales much shorter than the disk viscous time.

rate research

Read More

A linear stability analysis has been performed onto a self-gravitating magnetized gas disk bounded by external pressure. The resulting dispersion relation is fully explained by three kinds of instability: a Parker-type instability driven by self-gravity, usual Jeans gravitational instability and convection. In the direction parallel to the magnetic fields, the magnetic tension completely suppresses the convection. If the adiabatic index $gamma$ is less than a certain critical value, the perturbations trigger the Parker as well as the Jeans instability in the disk. Consequently, the growth rate curve has two maxima: one at small wavenumber due to a combination of the Parker and Jeans instabilities, and the other at somewhat larger wavenumber mostly due to the Parker instability. In the horizontal direction perpendicular to the fields, the convection makes the growth rate increase monotonically upto a limiting value as the perturbation wavenumber gets large. However, at small wavenumbers, the Jeans instability becomes effective and develops a peak in the growth rate curve. Depending on the system parameters, the maximum growth rate of the convection may or may not be higher than the peak due to the Jeans-Parker instability. Therefore, a cooperative action of the Jeans and Parker instabilities can have chances to over-ride the convection and may develop large scale structures of cylindrical shape in non-linear stage. In thick disks the cylinder is expected to align its axis perpendicular to the field, while in thin ones parallel to it.
Submillimeter bright galaxies in the early Universe are vigorously forming stars at ~1000 times higher rate than the Milky Way. A large fraction of stars is formed in the central 1 kiloparsec region, that is comparable in size to massive, quiescent galaxies found at the peak of the cosmic star formation history, and eventually the core of giant elliptical galaxies in the present-day Universe. However, the physical and kinematic properties inside a compact starburst core are poorly understood because dissecting it requires angular resolution even higher than the Hubble Space Telescope can offer. Here we report 550 parsec-resolution observations of gas and dust in the brightest unlensed submillimeter galaxy at z=4.3. We map out for the first time the spatial and kinematic structure of molecular gas inside the heavily dust-obscured core. The gas distribution is clumpy while the underlying disk is rotation-supported. Exploiting the high-quality map of molecular gas mass surface density, we find a strong evidence that the starburst disk is gravitationally unstable, implying that the self-gravity of gas overcomes the differential rotation and the internal pressure by stellar radiation feedback. The observed molecular gas would be consumed by star formation in a timescale of 100 million years, that is comparable to those in merging starburst galaxies. Our results suggest that the most extreme starburst in the early Universe originates from efficient star formation due to a gravitational instability in the central 2 kpc region.
A self-similar solution for time evolution of isothermal, self-gravitating viscous disks is found under the condition that $alpha equiv alpha (H/r)$ is constant in space (where $alpha$ is the viscosity parameter and $H/r$ is the ratio of a half-thickness to radius of the disk). This solution describes a homologous collapse of a disk via self-gravity and viscosity. The disk structure and evolution is distinct in the inner and outer parts. There is a constant mass inflow in the outer portions so that the disk has flat rotation velocity, constant accretion velocity, and surface density decreasing outward as $Sigma propto r^{-1}$. In the inner portions, in contrast, mass is accumulated near the center owing to the boundary condition of no radial velocity at the origin, thereby a strong central concentration being produced; surface density varies as $Sigma propto r^{-5/3}$. Moreover, the transition radius separating the inner and outer portions increases linearly with time. The consequence of such a high condensation is briefly discussed in the context of formation of a quasar black hole.
We report new infrared measurements of the supermassive black hole at the Galactic Center, Sgr A*, over a decade that was previously inaccessible at these wavelengths. This enables a variability study that addresses variability timescales that are ten times longer than earlier published studies. Sgr A* was initially detected in the near-infrared with adaptive optics observations in 2002. While earlier data exists in form of speckle imaging (1995 - 2005), Sgr A* was not detected in the initial analysis. Here, we improved our speckle holography analysis techniques. This has improved the sensitivity of the resulting speckle images by up to a factor of three. Sgr A* is now detectable in the majority of epochs covering 7 years. The brightness of Sgr A* in the speckle data has an average observed K magnitude of 16.0, which corresponds to a dereddened flux density of $3.4$ mJy. Furthermore, the flat power spectral density (PSD) of Sgr A* between $sim$80 days and 7 years shows its uncorrelation in time beyond the proposed single power-law break of $sim$245 minutes. We report that the brightness and its variability is consistent over 22 years. This analysis is based on simulations using Witzel et al. (2018) model to characterize infrared variability from 2006 to 2016. Finally, we note that the 2001 periapse of the extended, dusty object G1 had no apparent effect on the near-infrared emission from accretion flow onto Sgr A*. The result is consistent with G1 being a self-gravitating object rather than a disrupting gas cloud.
200 - C. Baruteau 2008
We investigate the tidal interaction between a low-mass planet and a self-gravitating protoplanetary disk, by means of two-dimensional hydrodynamic simulations. We first show that considering a planet freely migrating in a disk without self-gravity leads to a significant overestimate of the migration rate. The overestimate can reach a factor of two for a disk having three times the surface density of the minimum mass solar nebula. Unbiased drift rates may be obtained only by considering a planet and a disk orbiting within the same gravitational potential. In a second part, the disk self-gravity is taken into account. We confirm that the disk gravity enhances the differential Lindblad torque with respect to the situation where neither the planet nor the disk feels the disk gravity. This enhancement only depends on the Toomre parameter at the planet location. It is typically one order of magnitude smaller than the spurious one induced by assuming a planet migrating in a disk without self-gravity. We confirm that the torque enhancement due to the disk gravity can be entirely accounted for by a shift of Lindblad resonances, and can be reproduced by the use of an anisotropic pressure tensor. We do not find any significant impact of the disk gravity on the corotation torque.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا