نهدف في هذه الأطروحة إلى التعرف على النشاط البشري من مقطع فيديو. نبدأ بدراسة مرجعية
تشمل الطرق والخوارزميات المتّبعة في هذا المجال، وعرض لقواعد البيانات العالمية والطرق
المتبعة في الاختبار، ثم ننتقل إلى تصميم نظام للتعرف على النشاط البشري وتنفيذه في بيئة
MATLAB.
In this work, our goal is recognizing human action from video data. First we
propose an overview about Human Action Recognition, includes the famous
methods and previous algorithms, then we propose an algorithm and its
implementation using MATLAB.
Artificial intelligence review:
Research summary
تهدف هذه الأطروحة إلى التعرف على النشاط البشري من مقاطع الفيديو باستخدام خوارزميات معالجة الصور والشبكات العصبونية. تبدأ الدراسة بمراجعة مرجعية تشمل الطرق والخوارزميات المستخدمة في هذا المجال، وتقديم قواعد البيانات العالمية وطرق الاختبار المتبعة. يتم تصميم نظام للتعرف على النشاط البشري وتنفيذه باستخدام بيئة MATLAB، حيث يتم عرض العمل الرياضي بشكل كامل ونتائج الاختبارات والمقارنة مع الطرق المعروفة. تم تحقيق معدل تعرف يصل إلى 98.9% باستخدام قاعدة بيانات عالمية وطريقة اختبار معروفة. كما تقدم الأطروحة طريقة جديدة لتقييم تعقيد أنظمة التعرف على النشاط البشري ومعرفة إمكانية عمل أي نظام معالجة فيديو في الزمن الحقيقي. في النهاية، يتم عرض نتائج بعض الطرق التي تم تجربتها قبل الوصول بالخوارزمية إلى شكلها النهائي، مع شرح مفصل لهذه الطرق.
Critical review
دراسة نقدية: على الرغم من أن الأطروحة تقدم نتائج ممتازة في مجال التعرف على النشاط البشري، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، يجب التركيز على تحسين الزمن اللازم لاختبار مقطع الفيديو، حيث أن الزمن الحالي قد لا يكون كافياً للتطبيقات الزمن الحقيقي في جميع الحالات. ثانياً، يمكن تحسين الخوارزمية لتكون أكثر مرونة في التعامل مع التحديات مثل تغير الإضاءة والعوائق في الخلفية. ثالثاً، يجب النظر في استخدام تقنيات تعلم عميق أكثر تطوراً مثل الشبكات العصبونية التلافيفية (CNN) لتحسين الأداء بشكل أكبر.
Questions related to the research
-
ما هو معدل التعرف الذي تم تحقيقه باستخدام الخوارزمية المقترحة؟
تم تحقيق معدل تعرف يصل إلى 98.9% باستخدام الخوارزمية المقترحة.
-
ما هي البيئة البرمجية المستخدمة لتنفيذ الخوارزمية؟
تم تنفيذ الخوارزمية باستخدام بيئة MATLAB.
-
ما هي الطريقة الجديدة التي قدمتها الأطروحة لتقييم تعقيد الأنظمة؟
قدمت الأطروحة طريقة جديدة لتقييم تعقيد أنظمة التعرف على النشاط البشري ومعرفة إمكانية عمل أي نظام معالجة فيديو في الزمن الحقيقي.
-
ما هي التحديات التي تواجه التعرف على النشاط البشري في مقاطع الفيديو؟
تشمل التحديات تباين نقطة النظر، وجود العوائق، تباين معدل تنفيذ النشاط، الفضاء الذي يؤدي فيه كل شخص نشاطه، وحركة الكاميرا.
References used
Wannous Bashar, Jaafar Assef, and Albitar Chadi. "Human Action Recognition using Contour History Images and Neural Networks Classifier." International Research Journal of Engineering and Technology 4.8 (2017): 7
Turaga, Pavan, et al. "Machine recognition of human activities: A survey." IEEE Transactions on Circuits and Systems for Video Technology 18.11 (2008): 1473-1488
Aggarwal, Jake K., and Michael S. Ryoo. "Human activity analysis: A review." ACM Computing Surveys (CSUR) 43.3 (2011): 16
Current work in named entity recognition (NER) shows that data augmentation techniques can produce more robust models. However, most existing techniques focus on augmenting in-domain data in low-resource scenarios where annotated data is quite limite
We investigate video-aided grammar induction, which learns a constituency parser from both unlabeled text and its corresponding video. Existing methods of multi-modal grammar induction focus on grammar induction from text-image pairs, with promising
الغاية من هذا البحث بناء نظام لتصنيف نطق الأرقام الانكليزية وذلك بالاعتماد على نماذج ماركوف المخفية في التصنيف وذلك بالاعتماد على طيف الإشارة في استخراج سمات الإشارات
Temporal language grounding in videos aims to localize the temporal span relevant to the given query sentence. Previous methods treat it either as a boundary regression task or a span extraction task. This paper will formulate temporal language groun
Meta-learning has recently been proposed to learn models and algorithms that can generalize from a handful of examples. However, applications to structured prediction and textual tasks pose challenges for meta-learning algorithms. In this paper, we a