Do you want to publish a course? Click here

The Semiotic Features in the Augustian's text

الملامح السيميائية في النص الأوغسطيني

1603   0   16   0 ( 0 )
 Publication date 2017
  fields Philosphy
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This research handles the Semiotic Features in the Augustian's text an attempt to discover its nature and implication. It tackies the Semiotic theme, its concepts and relation to the Sociological Cultural realities of modern semitians. then it discusses the concept of sign and its relation to interpretation in this text showing its distinct features, Symbolic language which makes us delve deep into this text trying to open broaden horiozons via searching deep into existence to decipher hidden meanings of symbos in the external existence of things. It also deals with the speciality of sign to Augustein in which the theological perspective played the major role. It also aims at specifying the differences and similarities with some modern semitics to talk eventually about kinds of sign trying to end up with some results that help us comprehend the Augustian's text.


Artificial intelligence review:
Research summary
يتناول هذا البحث الملامح السيميائية في النص الأوغسطيني محاولاً الكشف عن طبيعتها ودلالتها. يبدأ البحث بعرض موضوع السيمياء ومفهومه وعلاقته بالواقع الاجتماعي والثقافي لدى السيميائيين المعاصرين. ثم يناقش مفهوم العلامة وعلاقتها بالتأويل في النص الأوغسطيني، مظهراً ما يتميز به هذا الأخير من لغة رمزية. يتعمق البحث في النص الأوغسطيني محاولاً استخراج المعاني الخفية للرموز التي يتضمنها الوجود الخارجي للأشياء. كما يناقش خصوصية العلامة عند أوغسطين ودور النظرة اللاهوتية في تشكيلها، ويحدد نقاط الالتقاء والاختلاف مع بعض السيميائيين المعاصرين. ينتهي البحث بتقديم بعض النتائج في تحديد الملامح السيميائية في النص الأوغسطيني.
Critical review
دراسة نقدية: يتضح من البحث أن المؤلفين بذلوا جهداً كبيراً في تحليل النص الأوغسطيني من منظور سيميائي، إلا أن هناك بعض النقاط التي يمكن مناقشتها بشكل أعمق. على سبيل المثال، يمكن توسيع النقاش حول تأثير النظرة اللاهوتية على مفهوم العلامة عند أوغسطين بشكل أكثر تفصيلاً وربطه بمفاهيم معاصرة. كما أن المقارنة مع السيميائيين المعاصرين كانت مختصرة وقد تستفيد من تحليل أعمق لتوضيح الفروق والتشابهات بشكل أوضح. بالإضافة إلى ذلك، يمكن تعزيز البحث بمزيد من الأمثلة العملية لتوضيح النقاط النظرية بشكل أفضل.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو الكشف عن الملامح السيميائية في النص الأوغسطيني وفهم طبيعتها ودلالتها.

  2. كيف يربط أوغسطين بين العلامة واللغة؟

    يربط أوغسطين بين العلامة واللغة من خلال اعتبار اللغة أداة للتعبير عن الفكر والوجود، وأن العلامات هي وسيلة لفهم المعاني المضمرة في النصوص.

  3. ما هي أنواع العلامات التي يناقشها أوغسطين في بحثه؟

    يميز أوغسطين بين نوعين من العلامات: العلامات الطبيعية والعلامات التواضعية (العرفية).

  4. ما هي أهمية التأويل في النص الأوغسطيني؟

    التأويل في النص الأوغسطيني مهم لأنه يهدف إلى استخراج المعاني الخفية والمضمرة من النصوص الدينية، ويعتمد على اللغة كأداة للتفسير والتعبير.


References used
MASIH,Y. Acritical History of Western philosophy ( creek, Mediev and Modern).india1993
STUMPH,SAMUALE .Philosophy,History and problem.New Yourk,Mcg raw-Hill,Inc,1994,p.996
rate research

Read More

Transfer learning methods, and in particular domain adaptation, help exploit labeled data in one domain to improve the performance of a certain task in another domain. However, it is still not clear what factors affect the success of domain adaptatio n. This paper models adaptation success and selection of the most suitable source domains among several candidates in text similarity. We use descriptive domain information and cross-domain similarity metrics as predictive features. While mostly positive, the results also point to some domains where adaptation success was difficult to predict.
With the growing popularity of smart speakers, such as Amazon Alexa, speech is becoming one of the most important modes of human-computer interaction. Automatic speech recognition (ASR) is arguably the most critical component of such systems, as erro rs in speech recognition propagate to the downstream components and drastically degrade the user experience. A simple and effective way to improve the speech recognition accuracy is to apply automatic post-processor to the recognition result. However, training a post-processor requires parallel corpora created by human annotators, which are expensive and not scalable. To alleviate this problem, we propose Back TranScription (BTS), a denoising-based method that can create such corpora without human labor. Using a raw corpus, BTS corrupts the text using Text-to-Speech (TTS) and Speech-to-Text (STT) systems. Then, a post-processing model can be trained to reconstruct the original text given the corrupted input. Quantitative and qualitative evaluations show that a post-processor trained using our approach is highly effective in fixing non-trivial speech recognition errors such as mishandling foreign words. We present the generated parallel corpus and post-processing platform to make our results publicly available.
This study is an attempt to highlight the impact that pumping vocabulary in the composition of poetry, and is no doubt that the semiotic this vocabulary effectively contribute in giving a recipe poetic text, because they represent the signs of sema ntics as diverse contexts in which they are contained, and the dynamism achieved from a damaged vocabulary within the same topic opens up new horizons, and pave the way for a variety of readings, according to the ability of the recipient language, cognitive and proceeds, hence the emphasis on the singular in construction as a key text for reproduction again.
The transformer-based pre-trained language models have been tremendously successful in most of the conventional NLP tasks. But they often struggle in those tasks where numerical understanding is required. Some possible reasons can be the tokenizers a nd pre-training objectives which are not specifically designed to learn and preserve numeracy. Here we investigate the ability of text-to-text transfer learning model (T5), which has outperformed its predecessors in the conventional NLP tasks, to learn numeracy. We consider four numeracy tasks: numeration, magnitude order prediction, finding minimum and maximum in a series, and sorting. We find that, although T5 models perform reasonably well in the interpolation setting, they struggle considerably in the extrapolation setting across all four tasks.
This paper describes our contribution to the Shared Task ReproGen by Belz et al. (2021), which investigates the reproducibility of human evaluations in the context of Natural Language Generation. We selected the paper Generation of Company descriptio ns using concept-to-text and text-to-text deep models: data set collection and systems evaluation'' (Qader et al., 2018) and aimed to replicate, as closely to the original as possible, the human evaluation and the subsequent comparison between the human judgements and the automatic evaluation metrics. Here, we first outline the text generation task of the paper of Qader et al. (2018). Then, we document how we approached our replication of the paper's human evaluation. We also discuss the difficulties we encountered and which information was missing. Our replication has medium to strong correlation (0.66 Spearman overall) with the original results of Qader et al. (2018), but due to the missing information about how Qader et al. (2018) compared the human judgements with the metric scores, we have refrained from reproducing this comparison.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا