لقد نجحت النماذج اللغوية المدربة مسبقا للمحولات بشكل كبير في معظم مهام NLP التقليدية.لكنهم غالبا ما يكافحون في هذه المهام حيث يلزم التفاهم العددي.يمكن أن تكون بعض الأسباب المحتملة هي الأحمال وأهداف ما قبل التدريب غير المصممة خصيصا للتعلم والحفاظ على الحساب.نحن هنا التحقيق في قدرة نموذج تعلم تحويل النص إلى النصي (T5)، والذي تفوقت على أسلافه في المهام التقليدية لبرنامج التعاون الخليجي، لتعلم الحساب.نحن نعتبر أربع مهام الحسابية: التردد، تنبؤ ترتيب الحجم، والعثور على الحد الأدنى والحد الأقصى في سلسلة، والفرز.نجد أنه على الرغم من أن نماذج T5 تؤدي بشكل جيد في إعداد الاستيفاء، إلا أنهم يكافحون إلى حد كبير في إعداد الاستقراء عبر جميع المهام الأربعة.
The transformer-based pre-trained language models have been tremendously successful in most of the conventional NLP tasks. But they often struggle in those tasks where numerical understanding is required. Some possible reasons can be the tokenizers and pre-training objectives which are not specifically designed to learn and preserve numeracy. Here we investigate the ability of text-to-text transfer learning model (T5), which has outperformed its predecessors in the conventional NLP tasks, to learn numeracy. We consider four numeracy tasks: numeration, magnitude order prediction, finding minimum and maximum in a series, and sorting. We find that, although T5 models perform reasonably well in the interpolation setting, they struggle considerably in the extrapolation setting across all four tasks.
References used
https://aclanthology.org/
In most cases, the lack of parallel corpora makes it impossible to directly train supervised models for the text style transfer task. In this paper, we explore training algorithms that instead optimize reward functions that explicitly consider differ
With the growing popularity of smart speakers, such as Amazon Alexa, speech is becoming one of the most important modes of human-computer interaction. Automatic speech recognition (ASR) is arguably the most critical component of such systems, as erro
Unsupervised style transfer models are mainly based on an inductive learning approach, which represents the style as embeddings, decoder parameters, or discriminator parameters and directly applies these general rules to the test cases. However, the
This paper describes our contribution to the Shared Task ReproGen by Belz et al. (2021), which investigates the reproducibility of human evaluations in the context of Natural Language Generation. We selected the paper Generation of Company descriptio
Text style transfer involves rewriting the content of a source sentence in a target style. Despite there being a number of style tasks with available data, there has been limited systematic discussion of how text style datasets relate to each other.