Do you want to publish a course? Click here

A New Algorithm for Data Clustering and Enhancing K-Means Algorithm

خوارزمية جديدة لعنقدة البيانات و تحسين خوارزمية الK-Means

2910   6   69   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This paper introduces a new algorithm to solve some problems that data clustering algorithms such as K-Means suffer from. This new algorithm by itself is able to cluster data without the need of other clustering algorithms.

References used
HAN, J, AND KAMBER, M. 2006- Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, New Delhi, (2nd ed), 772p
RAUF, A, SHEEBA, S, KHUSOR, S, AND JAVED, H.2012- Enhanced K-Mean Clustering Algorithm to Reduce Number of Iterations and Time Complexity, Middle-East Journal of Scientific Research, Pakistan
ALARBEA, A, SENTHEKUMAR, H, AND BADER, A. 2013- Enhancing K-Means Algorithm with Initial Cluster Centers Derived from Data Partitioning along the Data Axis with PCA, Journal of Advances in Computer Networks, Vol. 1, No. 2, June 2013
rate research

Read More

The algorithm classifies objects to a predefined number of clusters, which is given by the user (assume k clusters). The idea is to choose random cluster centers, one for each cluster. These centers are preferred to be as far as possible from each ot her. Starting points affect the clustering process and results. Here the Centroid initialization plays an important role in determining the cluster assignment in effective way. Also, the convergence behavior of clustering is based on the initial centroid values assigned. This research focuses on the assignment of cluster centroid selection so as to improve the clustering performance by K-Means clustering algorithm. This research uses Initial Cluster Centers Derived from Data Partitioning along the Data Axis with the Highest Variance to assign for cluster centroid.
In this paper, we introduce a modification to fuzzy mountain data clustering algorithm. We were able to make this algorithm working automatically, through finding a way to divide the space, to determine the values of the input parameters, and the stop condition automatically, instead of getting them by the user.
In this paper, we introduce a modification to fuzzy mountain data clustering algorithm. We were able to make this algorithm working automatically, through finding a way to divide the space, to determine the values of the input parameters, and the stop condition automatically, instead of getting them by the user.
The majority of recent digital signature algorithms depend, in their structure, on complicated mathematical concepts that require a long time and a significant computational effort to be executed. As a trial to reduce these problems, some researchers have proposed digital signature algorithms which depend on simple arithmetic functions and operations that are executed quickly, but that was at the expense of the security of algorithms.
As it’s known, The Graph k-Colorability Problem (GCP) is a wellknown NP-Hard Problem. This problem consists in finding the k minimum number of colors to paint the vertices of a graph in such a way that any two adjoined vertices, which are connecte d by an edge, have always different colors. In another words how can we color the edges of a graph in such a way that any two edges joined by a vertex have always different colors? In this paper we introduce a new effective algorithm for coloring the edges of the graph. Our proposed algorithm enables us to achieve a Continuously Edge Coloring (CEC) for a set of known graphs.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا