Do you want to publish a course? Click here

Evaluation of Features Selection in Enhancing the Performance of Palm Print Recognition

تقويم فعالية اختيار السمات الأفضل في تحسين التعرف على الأشخاص باستخدام صورة راحة اليد

1294   0   98   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This paper introduces a new approach to extract palm print features and select the best ones. The paper also studies the effectiveness of the selection process on speed and performance of system.


Artificial intelligence review:
Research summary
تقدم الدراسة طريقة جديدة لاستخلاص سمات صورة راحة اليد وتحديد السمات الأكثر فعالية منها، إضافة إلى دراسة تأثير عملية الاختيار على تسريع عمل مراحل النظام ورفع أدائه. يقترح البحث الحالي إنجاز أربع مراحل أساسية تتضمن الأولى عملية معالجة مسبقة لصور البد لتصحيح دورانها واتجاهها، أما المرحلة الثانية فتشمل تجزيء صورة اليد واستخلاص نقاط التلاقى بين الأصابع والحصول على منطقة الأصابع وخطوط الحياة، أما المرحلة الثالثة فتمثل عملية استخلاص السمات وهى الزوايا المنتشكلة من نقاط التلاقى بين الأصابع وسماكة الأصابع والسمات الإحصائية لخطوط الحياة، وفى المرحلة الأخيرة تم إنجاز عملية التعرف والتصنيف. طبقت مرحلة التجزيء على قاعدة بيانات CASIA لصور اليد المؤلفة من (1200) صورة تعود لـ (300) شخص وتم التوصل لدقة تجزيء 97.8%. تم أخذ 160 صورة مجزأة تعود لـ 40 شخص واستخدمت كقاعدة بيانات لمرحلة التعرف، و 290 صورة اختبار وتم التوصل لمعدل تعرف 96.66%.
Critical review
دراسة نقدية: تقدم هذه الدراسة إسهاماً مهماً في مجال التعرف على الأشخاص باستخدام صور راحة اليد، حيث تم التركيز على تحسين دقة وسرعة النظام من خلال اختيار السمات الأكثر فعالية. ومع ذلك، يمكن الإشارة إلى بعض النقاط التي قد تحتاج إلى مزيد من التحليل والتطوير. أولاً، لم يتم التطرق بشكل كافٍ إلى تأثير التغيرات البيئية مثل الإضاءة والاتجاه على دقة النظام، وهو ما يمكن أن يكون له تأثير كبير في التطبيقات العملية. ثانياً، قد يكون من المفيد مقارنة نتائج هذه الدراسة مع نتائج دراسات أخرى استخدمت تقنيات مختلفة لاستخلاص السمات، وذلك لتحديد مدى تفوق الطريقة المقترحة. أخيراً، يمكن أن يكون هناك اهتمام أكبر بتحليل الزمن اللازم لكل مرحلة من مراحل النظام بشكل أكثر تفصيلاً، وذلك لتحديد النقاط التي يمكن تحسينها بشكل أكبر.
Questions related to the research
  1. ما هي المراحل الأساسية الأربع التي يقترحها البحث لاستخلاص سمات صورة راحة اليد؟

    تشمل المراحل الأربع: المعالجة المسبقة لتصحيح دوران واتجاه صورة اليد، تجزيء صورة اليد واستخلاص نقاط التلاقى بين الأصابع، استخلاص السمات مثل الزوايا وسماكة الأصابع والسمات الإحصائية لخطوط الحياة، وأخيراً مرحلة التعرف والتصنيف.

  2. ما هي قاعدة البيانات المستخدمة في الدراسة وما هي دقة التجزيء التي تم التوصل إليها؟

    تم استخدام قاعدة بيانات CASIA لصور اليد المؤلفة من 1200 صورة تعود لـ 300 شخص، وتم التوصل لدقة تجزيء 97.8%.

  3. ما هي السمات التي تم استخلاصها في المرحلة الثالثة من البحث؟

    تم استخلاص الزوايا المتشكلة من نقاط التلاقى بين الأصابع، سماكة الأصابع، والسمات الإحصائية لخطوط الحياة.

  4. ما هو معدل التعرف الذي تم التوصل إليه في مرحلة التعرف والتصنيف؟

    تم التوصل إلى معدل تعرف 96.66%.


References used
(Doublet J., Lepetit O. and Revenu M., 2006 "Contact-less Hand Recognition using shape and texture features", 8th International Conference on Signal Processing, Vol (3
Funada. J., Ohta N., Mizoguchi M., Temma T., Nakanishi K., Murai A., Sugiuchi T., Wakabayashi T., and Yamada Y 1998 “Feature extraction method for palmprint considering elimination of creases,” Proc.14th International Conference of Pattern Recognition, vol(2), pp. 1849 -1854
Han C. -C., Cheng H.-L., Lin C.-L. and Fan K.-C., 2003 "Personal authentication using palm print features," Pattern Recognition Journal, vol (36), pp. 371-381
rate research

Read More

Personal identification based on handprint has been gaining more attention with the increasing needs of high level of security. In this study a novel approach for human recognition based on handprint is proposed. Wavelet transform was used to extra ct features presented in the palm image based on wavelet zero-crossing method. Firstly the wavelet transform of the whole palm image at the fourth level was worked out, which results in four matrices; three of them are detail matrices (i.e., horizontal, vertical and diagonal) as well as one approximation matrix. Throughout this study, only the detail matrices were used because the required information (i.e., hand lines and curves) is included in those matrices. Sixteen features were extracted from each detail matrix, and then arranged in one vector. Consequently, for each palm sample a feature vector consisting of 48 input features of the used neural network was obtained. For this purpose, a database consisting of 400 palm images belonging to 40 people at the rate of 10 images per person was built. Practical tests outcome showed that the designed system successfully indentified 91.36% of the tested images.
The study suggests designing a weighting model for iris features and selection of the best ones to show the effect of weighting and selection process on system performance. The search introduces a new weighting and fusion algorithm depends on the i nter and intra class differences and the fuzzy logic. The output of the algorithm is the feature’s weight of the selected features. The designed system consists of four stages which are iris segmentation, feature extraction, feature weighting_selection_fusion model implementation and recognition. System suggests using region descriptors for defining the center and radius of iris region, then the iris is cropped and transformed into the polar coordinates via rotation and selection of radius-size pixels of fixed window from center to circumference. Feature extraction stage is done by wavelet vertical details and the statistical metrics of 1st and 2nd derivative of normalized iris image. At weighting and fusion step the best features are selected and fused for classification stage which is done by distance classifier. The algorithm is applied on CASIA database which consists of iris images related to 250 persons. It achieved 100% segmentation precision and 98.7% recognition rate. The results show that segmentation algorithm is robust against illumination and rotation variations and occlusion by eye lash and lid, and the weighting_selection_fusion algorithm enhances the system performance.
The speech recognition is one of the most modern technologies, which entered force in various fields of life, whether medical or security or industrial techniques. Accordingly, many related systems were developed, which differ from each otherin fea ture extraction methods and classification methods. In this research,three systems have been created for speech recognition.They differ from each other in the used methods during the stage of features extraction.While the first system used MFCC algorithm, the second system used LPCC algorithm, and the third system used PLP algorithm.All these three systems used HMM as classifier. At the first, the performance of the speechrecognitionprocesswas studied and evaluatedfor all the proposedsystems separately. After that, the combination algorithm was applied separately on eachpair of the studied system algorithmsin order to study the effect of using the combination algorithm onthe improvement of the speech recognition process. Twokinds of errors(simultaneous errors and dependent errors) were usedto evaluate the complementaryof each pair of the studied systems, and to study the effectiveness of the combination on improving the performance of speech recognition process. It can be seen from the results of the comparison that the best improvement ratio of speech recognition has been obtained in the case of collection MFCC and PLP algorithms with recognition ratio of 93.4%.
Designing Computerized Systems which posses reading and hearing faculties is an active research area for more than four decades. Many methods and algorithms have been suggested by researches for this purpose as part of pattern recognition research . Recently, more research work has been devoted to the holist approach the recognition system recognizes a complete word as one object without going through the long and erroneous character segmentation process. In this paper, a convolutional neural network has been designed to recognize the popular Arabic names holistically. SUSt ARG names data set has been used to test the network performance (collected and compiled by pattern recognition research in Sudan University of Science and Technology-SUSt). Selecting an appropriate deep learning toolbox, after five stages of training, the network was able to recognize all the names and 100%
This paper presents a new technique to extract the features of a common case of images of the iris called off-angle iris which taken for persons identification system. The main problem when using biological iris measurements to identify the persons is the difficulty of identifying and extracting features of the iris. This problem increasing when dealing with off-angle iris and it leading to decrease system accuracy and increase system rate error.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا