Do you want to publish a course? Click here

Designing of high-efficiency DC-DC converter of photovoltaic system

تصميم نموذج لمبدل DC-DC عالي الفعالية خاص بالنظام الكهروضوئي

1297   0   144   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The article studies the open loop and closed loop systems for the improved converter. An improved DC-DC boost converter is modeled and simulated using Matlab R2013a. The simulation and experimental results of the tow systems are presented and compared. The performance of the improved converter is also compared with the conventional boost converter.The article studies the open loop and closed loop systems for the improved converter. An improved DC-DC boost converter is modeled and simulated using Matlab R2013a. The simulation and experimental results of the tow systems are presented and compared. The performance of the improved converter is also compared with the conventional boost converter.

References used
Shila B, Patel K. Matlab modeling and simulation of grid connecter solar photovoltaic system with boost converter. International Journal For Technological Research In Engineering ,May-2016,Vol 3, Issue 9, 2347 - 4718
Khajezadeh A; Ahmadipour A, Motlagh M. S. DC-DC CONVERTERS VIAMATLAB/SIMULINK. International Journal of Scientific & Engineering Research, 2014;Vol 5, Issue 10, 2229-5518
Blaabjerg F, Chen Z, Kjaer SB. Power electronics as efficient interface in dispersed power generation systems. IEEE Trans. Power Electronics, 2004; 19(5):1184-1194
rate research

Read More

This research introduce a detailed study of designing high efficiency 100W DC-DC Boost Converter for standalone photovoltaic system and practical implementation of it’s circuit, by selecting the best elements with less loss in power in the tow des igns,to reach the best efficiency by theoretical calculations and simulation in ORCA, and compare the results with the practical implementation. Also this research shows a study of effect of frequency variation on the efficiency of the converter.
Search is based on the first stage DC/DC in the solar photovoltaic system, where it was appropriate to use Ripple Correlation Control method for tracking the maximum power point of photovoltaic arrays. The technique takes advantage of the signal ri pple, which is automatically present in power converters, where the ripple is interpreted as a perturbation from which a gradient ascent optimization can be realized. The Basic feature of Ripple Correlation Control technique converges asymptotically at maximum speed to the maximum power point, and has simple circuit implementations. And will validate the results in practice.
This research is a study of a new control method of switching non-isolated dc-dc boost converters used in Photovoltaic systems. This method is called Sliding Mode Control (SMC), which is considered as an alternative to other methods, to keep a sta ble and constant output voltage by changing the input voltage and load current. The analyzing method of the switching nonisolated dc-dc boost converters using SMC shows the same complexity of Clasic circuits, but it gives an increasing potential and a high-dynamic response to ensure a constant output voltage reaches to 40volt by changing the input voltage in the range (16-21volt) and the load (8-13Ω). Methods to measure the accuracy, error, and efficiency of maximum power point trackers (MPPT) have been identified and presented in a schematic way, together with definitions of terms and calculations.
This paper offer a designed module for buck-boost DC-DC converter, able to solve unsteady charging voltage problem, due to constant decreasing scale of transformers and grid or solar panel voltage drop, this module has been designed using fuzzy log ic in PWM control and simulated in matlab and all test and its results illustrated the suitable figure.
This research deals with the modeling of a Multi-Layers Feed Forward Artificial Neural Networks (MLFFNN), trained using Gradient Descent algorithm with Momentum factor & adaptive learning rate, to estimate the output of the neural network correspon ding to the optimal Duty Cycle of DC-DC Boost Converter to track the Maximum Power Point of Photovoltaic Energy Systems. Thus, the DMPPT-ANN “Developed MPPT-ANN” controller proposed in this research, independent in his work on the use of electrical measurements output of PV system to determine the duty cycle, and without the need to use a Proportional-Integrative Controller to control the cycle of the work of the of DC-DC Boost Converter, and this improves the dynamic performance of the proposed controller to determine the optimal Duty Cycle accurately and quickly. In this context, this research discusses the optimal selection of the proposed MLFFNN structure in the research in terms of determining the optimum number of hidden layers and the optimal number of neurons in them, evaluating the values of the Mean square error and the resulting Correlation Coefficient after each training of the neural network. The final network model with the optimal structure is then adopted to form the DMPPT-ANN Controller to track the MPP point of the PV system. The simulation results performed in the Matlab / Simulink environment demonstrated the best performance of the proposed DMPPT-ANN controller based on the MLFFNN neural network model, by accurately estimating the Duty Cycle and improving the response speed of the PV system output to MPP access, , as well as finally eliminating the resulting oscillations in the steady state of the Power response curve of PV system compared with the use of a number of reference controls: an advanced tracking controller MPPT-ANN-PI based on ANN network to estimate MPP point voltage with conventional PI controller, a MPPT-FLC and a conventional MPPT-INC uses the Incremental Conductance technique INC
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا