Do you want to publish a course? Click here

Semiperfect ring which is Extending for simple modules

الحلقة نصف التامة التي هي ممدد لمودول بسيط

1552   0   26   0 ( 0 )
 Publication date 2004
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Any right R-module M is called a CS-module if every submodule of M is essential in a direct summand of M. A ring is said to be CS-ring if R as a right R-module is CS [9]. In this paper we study semiperfect ring in which each simple right R-module is essential in a direct summand of R. We call such ring as a extending for simple R-module. Here we find that for such rings, every simple R-module is weakly-injective if and only if R is weakly-injective if and only if R is self-injective if and only if R is weakly-semisimple. Examples are constructed for which simple R-module is essential in a direct summand.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية دراسة الحلقات شبه الكاملة (semiperfect rings) التي تكون ممتدة للوحدات البسيطة. يُطلق على الوحدة اليمنى R-module M وحدة CS إذا كان كل وحدة فرعية من M جوهرية في مجموع مباشر من M. تُعرف الحلقة بأنها حلقة CS إذا كانت R كوحدة R-يمينية هي وحدة CS. في هذه الورقة، يتم دراسة الحلقات شبه الكاملة التي تكون فيها كل وحدة R-يمينية بسيطة جوهرية في مجموع مباشر من R. تُسمى هذه الحلقات بأنها ممتدة للوحدات البسيطة. تم العثور على أن هذه الحلقات تكون فيها كل وحدة R-يمينية بسيطة ضعيفة الحقن إذا وفقط إذا كانت R ضعيفة الحقن وإذا وفقط إذا كانت R ذاتية الحقن وإذا وفقط إذا كانت R ضعيفة شبه بسيطة. تم تقديم أمثلة للحلقات التي تكون فيها الوحدة البسيطة R-يمينية جوهرية في مجموع مباشر.
Critical review
دراسة نقدية: تعد هذه الورقة البحثية إضافة قيمة إلى الأدبيات الموجودة حول الحلقات شبه الكاملة والوحدات الممتدة. ومع ذلك، يمكن أن تكون بعض المفاهيم معقدة للغاية لفهمها بدون خلفية قوية في نظرية الحلقات والوحدات. قد يكون من المفيد تضمين المزيد من الأمثلة التوضيحية والتطبيقات العملية لتوضيح الأفكار النظرية. بالإضافة إلى ذلك، يمكن تحسين الورقة من خلال توضيح بعض التعريفات والمصطلحات بشكل أكثر تفصيلاً لتسهيل الفهم على القراء غير المتخصصين.
Questions related to the research
  1. ما هو تعريف الوحدة CS؟

    الوحدة اليمنى R-module M تُسمى وحدة CS إذا كان كل وحدة فرعية من M جوهرية في مجموع مباشر من M.

  2. ما هي الشروط اللازمة لكي تكون الحلقة R ضعيفة الحقن؟

    الحلقة R تكون ضعيفة الحقن إذا وفقط إذا كانت كل وحدة R-يمينية بسيطة ضعيفة الحقن وإذا وفقط إذا كانت R ذاتية الحقن وإذا وفقط إذا كانت R ضعيفة شبه بسيطة.

  3. ما هو الهدف الرئيسي من هذه الورقة البحثية؟

    الهدف الرئيسي هو دراسة الحلقات شبه الكاملة التي تكون فيها كل وحدة R-يمينية بسيطة جوهرية في مجموع مباشر من R وتحديد الشروط التي تجعل هذه الحلقات ضعيفة الحقن وذاتية الحقن وضعيفة شبه بسيطة.

  4. ما هي الفائدة من دراسة الحلقات شبه الكاملة الممتدة للوحدات البسيطة؟

    دراسة هذه الحلقات تساعد في فهم الخصائص الهيكلية للحلقات والوحدات، مما يمكن أن يكون له تطبيقات في مجالات الرياضيات المختلفة مثل الجبر المجرد ونظرية الحلقات.


References used
(F.W. ANDERSON and K.R. FULLER, “Rings and categories of modules”, Springer-Verlag, New York / Heidelberg / Berlin, (1974
(C.FAITH, “Alegebra :Rings, modules and categories I,”Springer-Verlag, New York / Heidelberg! Berlin, (1973
B.L. OSOFSKY, A Generalization of Quasi-Frobemous Ring, Journal fo Algebra 4 (1966), 373-387
rate research

Read More

Transformer models are permutation equivariant. To supply the order and type information of the input tokens, position and segment embeddings are usually added to the input. Recent works proposed variations of positional encodings with relative posit ion encodings achieving better performance. Our analysis shows that the gain actually comes from moving positional information to attention layer from the input. Motivated by this, we introduce Decoupled Positional Attention for Transformers (DIET), a simple yet effective mechanism to encode position and segment information into the Transformer models. The proposed method has faster training and inference time, while achieving competitive performance on GLUE, XTREME and WMT benchmarks. We further generalize our method to long-range transformers and show performance gain.
Conditioned dialogue generation suffers from the scarcity of labeled responses. In this work, we exploit labeled non-dialogue text data related to the condition, which are much easier to collect. We propose a multi-task learning approach to leverage both labeled dialogue and text data. The 3 tasks jointly optimize the same pre-trained Transformer -- conditioned dialogue generation task on the labeled dialogue data, conditioned language encoding task and conditioned language generation task on the labeled text data. Experimental results show that our approach outperforms the state-of-the-art models by leveraging the labeled texts, and it also obtains larger improvement in performance comparing to the previous methods to leverage text data.
There is an emerging interest in the application of natural language processing models to source code processing tasks. One of the major problems in applying deep learning to software engineering is that source code often contains a lot of rare ident ifiers, resulting in huge vocabularies. We propose a simple, yet effective method, based on identifier anonymization, to handle out-of-vocabulary (OOV) identifiers. Our method can be treated as a preprocessing step and, therefore, allows for easy implementation. We show that the proposed OOV anonymization method significantly improves the performance of the Transformer in two code processing tasks: code completion and bug fixing.
This paper presents our multilingual dependency parsing system as used in the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies. Our system consists of an unfactorized biaffine classifier that operates directly on fine-tuned XLM-R embeddings and generates enhanced UD graphs by predicting the best dependency label (or absence of a dependency) for each pair of tokens. To avoid sparsity issues resulting from lexicalized dependency labels, we replace lexical items in relations with placeholders at training and prediction time, later retrieving them from the parse via a hybrid rule-based/machine-learning system. In addition, we utilize model ensembling at prediction time. Our system achieves high parsing accuracy on the blind test data, ranking 3rd out of 9 with an average ELAS F1 score of 86.97.

suggested questions

comments (0)
no comments...
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا