تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع تفكير بطيء و تفكير سريع ت
thinking fast and slow, thinking fast and slow, thinking fast and slow, thinking fast and slow, thinking fast and slow, thinking fast and slow, thinking fast and slow, thinking fast and slow, thinking fast and slow, thinking fast and slow, thinking fast and slow, thinking fast and slow, thinking fast and slow, thinking fast and slow,
We often use perturbations to regularize neural models. For neural encoder-decoders, previous studies applied the scheduled sampling (Bengio et al., 2015) and adversarial perturbations (Sato et al., 2019) as perturbations but these methods require co
Recent work has adopted models of pragmatic reasoning for the generation of informative language in, e.g., image captioning. We propose a simple but highly effective relaxation of fully rational decoding, based on an existing incremental and characte
With the widespread of new fast networks and need for critical application, survivability,
reliability and quality of service became an sensational issue. Recovery mechanism used by IP
network spent a lot of time from several seconds to minutes. Th
Human dialogue contains evolving concepts, and speakers naturally associate multiple concepts to compose a response. However, current dialogue models with the seq2seq framework lack the ability to effectively manage concept transitions and can hardly
This paper takes a first step towards a critical thinking curriculum for neural auto-regressive language models. We introduce a synthetic corpus of deductively valid arguments, and generate artificial argumentative texts to train CRiPT: a critical th