Do you want to publish a course? Click here

Critical Thinking for Language Models

التفكير النقدي لنماذج اللغة

359   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper takes a first step towards a critical thinking curriculum for neural auto-regressive language models. We introduce a synthetic corpus of deductively valid arguments, and generate artificial argumentative texts to train CRiPT: a critical thinking intermediarily pre-trained transformer based on GPT-2. Significant transfer learning effects can be observed: Trained on three simple core schemes, CRiPT accurately completes conclusions of different, and more complex types of arguments, too. CRiPT generalizes the core argument schemes in a correct way. Moreover, we obtain consistent and promising results for NLU benchmarks. In particular, CRiPT's zero-shot accuracy on the GLUE diagnostics exceeds GPT-2's performance by 15 percentage points. The findings suggest that intermediary pre-training on texts that exemplify basic reasoning abilities (such as typically covered in critical thinking textbooks) might help language models to acquire a broad range of reasoning skills. The synthetic argumentative texts presented in this paper are a promising starting point for building such a critical thinking curriculum for language models.''



References used
https://aclanthology.org/
rate research

Read More

Saliency methods are widely used to interpret neural network predictions, but different variants of saliency methods often disagree even on the interpretations of the same prediction made by the same model. In these cases, how do we identify when are these interpretations trustworthy enough to be used in analyses? To address this question, we conduct a comprehensive and quantitative evaluation of saliency methods on a fundamental category of NLP models: neural language models. We evaluate the quality of prediction interpretations from two perspectives that each represents a desirable property of these interpretations: plausibility and faithfulness. Our evaluation is conducted on four different datasets constructed from the existing human annotation of syntactic and semantic agreements, on both sentence-level and document-level. Through our evaluation, we identified various ways saliency methods could yield interpretations of low quality. We recommend that future work deploying such methods to neural language models should carefully validate their interpretations before drawing insights.
Using data from English cloze tests, in which subjects also self-reported their gender, age, education, and race, we examine performance differences of pretrained language models across demographic groups, defined by these (protected) attributes. We demonstrate wide performance gaps across demographic groups and show that pretrained language models systematically disfavor young non-white male speakers; i.e., not only do pretrained language models learn social biases (stereotypical associations) -- pretrained language models also learn sociolectal biases, learning to speak more like some than like others. We show, however, that, with the exception of BERT models, larger pretrained language models reduce some the performance gaps between majority and minority groups.
We introduce BERTweetFR, the first large-scale pre-trained language model for French tweets. Our model is initialised using a general-domain French language model CamemBERT which follows the base architecture of BERT. Experiments show that BERTweetFR outperforms all previous general-domain French language models on two downstream Twitter NLP tasks of offensiveness identification and named entity recognition. The dataset used in the offensiveness detection task is first created and annotated by our team, filling in the gap of such analytic datasets in French. We make our model publicly available in the transformers library with the aim of promoting future research in analytic tasks for French tweets.
While pre-trained language models (PLMs) are the go-to solution to tackle many natural language processing problems, they are still very limited in their ability to capture and to use common-sense knowledge. In fact, even if information is available in the form of approximate (soft) logical rules, it is not clear how to transfer it to a PLM in order to improve its performance for deductive reasoning tasks. Here, we aim to bridge this gap by teaching PLMs how to reason with soft Horn rules. We introduce a classification task where, given facts and soft rules, the PLM should return a prediction with a probability for a given hypothesis. We release the first dataset for this task, and we propose a revised loss function that enables the PLM to learn how to predict precise probabilities for the task. Our evaluation results show that the resulting fine-tuned models achieve very high performance, even on logical rules that were unseen at training. Moreover, we demonstrate that logical notions expressed by the rules are transferred to the fine-tuned model, yielding state-of-the-art results on external datasets.
The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. Here we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph-based message passing. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا