Do you want to publish a course? Click here

Java Functions Scenarios To Generate JUnit Classes

سيناريوهات دوال جافا لتوليد صفوف JUnit

1378   0   23   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Unit testing is a practical approach for increasing the correctness and quality of software; but writing unit test code is exhausting and tedious job; and requires a great deal of time and effort. So even with the use of frameworks for writing and running unit test such as JUnit this will need a great deal of time and effort. As a consequence, there is a pressure in writing testing code. So we present in this paper a new method to generate unit testing automatically in order to speed up the testing process and reduce the cost. We have implemented this method on the Java programming language, where we write a new specification called JFS describes the behavior of the function in terms of input and output. This specification is written inside the code class and is independent of the code, and it can be written before starting the code phase and thus achieve the principle TDD Test-Driven Development which is based on written test-first in order to improve the development process. After writing specification we will generate test classes for the execution of unit testing (we used JUnit as framework to execute unit testing) based on the new specification.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة مشكلة كتابة اختبارات الوحدة البرمجية بشكل يدوي، والتي تعتبر عملية مرهقة وتستغرق وقتاً طويلاً. تقدم الدراسة حلاً لهذه المشكلة من خلال اقتراح طريقة جديدة لتوليد اختبارات الوحدة بشكل آلي باستخدام توصيف جديد لدوال جافا يسمى Java Functions Scenarios (JFS). يتم كتابة توصيف JFS داخل الصف البرمجي ويصف سلوك الدالة من حيث المدخلات والمخرجات، مما يسهل عملية توليد اختبارات JUnit بشكل آلي. تعتمد الطريقة على مبدأ التطوير المقاد بالاختبار (TDD) الذي يشجع على كتابة الاختبارات أولاً قبل كتابة الكود البرمجي. تم تنفيذ هذه الطريقة باستخدام لغة البرمجة جافا وإطار العمل JUnit. تساهم هذه الطريقة في تقليل الوقت والجهد المبذولين في كتابة اختبارات الوحدة وتحسين جودة البرمجيات من خلال الكشف المبكر عن الأخطاء.
Critical review
دراسة نقدية: تقدم هذه الدراسة حلاً مبتكراً لمشكلة كتابة اختبارات الوحدة بشكل يدوي، ولكن هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم تقديم أمثلة عملية كافية توضح كيفية تطبيق توصيف JFS في مشاريع برمجية حقيقية. ثانياً، قد يكون من المفيد مقارنة هذه الطريقة مع طرق أخرى لتوليد اختبارات الوحدة آلياً لمعرفة مدى فعاليتها وكفاءتها. وأخيراً، يمكن توسيع الدراسة لتشمل لغات برمجة أخرى غير جافا، مما يزيد من شمولية وفائدة البحث.
Questions related to the research
  1. ما هو الهدف الرئيسي من استخدام توصيف JFS في اختبار الوحدة؟

    الهدف الرئيسي من استخدام توصيف JFS هو تسريع عملية توليد اختبارات الوحدة وتقليل الجهد والوقت المستغرقين في كتابتها يدوياً، بالإضافة إلى تحسين جودة البرمجيات من خلال الكشف المبكر عن الأخطاء.

  2. كيف يساهم توصيف JFS في تحقيق مبدأ التطوير المقاد بالاختبار (TDD)؟

    يساهم توصيف JFS في تحقيق مبدأ التطوير المقاد بالاختبار (TDD) من خلال السماح بكتابة توصيف الاختبارات قبل البدء بكتابة الكود البرمجي، مما يشجع على كتابة اختبارات الوحدة أولاً وتحسين عملية التطوير بشكل عام.

  3. ما هي الفائدة من استخدام إطار العمل JUnit في هذه الدراسة؟

    إطار العمل JUnit يوفر بيئة متكاملة لكتابة وتشغيل اختبارات الوحدة في لغة جافا، مما يسهل عملية تنفيذ الاختبارات والتحقق من صحة الكود البرمجي بشكل فعال.

  4. ما هي التحديات التي قد تواجه المطورين عند استخدام توصيف JFS؟

    من التحديات التي قد تواجه المطورين عند استخدام توصيف JFS هو الحاجة إلى تعلم كيفية كتابة التوصيف بشكل صحيح وفعال، بالإضافة إلى ضرورة التحقق من صحة التوصيف لضمان توليد اختبارات وحدة دقيقة وموثوقة.


References used
John A. van der Poll," Formal methods in software development: A road less travelled", July 2010
Sami Vaaraniemi." The benefits of automated unit testing", 2003
Vincent Massol with Ted Husted,"JUnit IN ACTION",2004
rate research

Read More

This lecture is a review for java basics which includes: data types, variables, conditionals and loops, classes and inheritance.
Here we review more java concepts such as Classes that represent primitive data types, Exceptions, arrays, interfaces and packages.
In this lecture threads in Java are introduced and how they can be created and synchronized together.
Deep neural networks and huge language models are becoming omnipresent in natural language applications. As they are known for requiring large amounts of training data, there is a growing body of work to improve the performance in low-resource settin gs. Motivated by the recent fundamental changes towards neural models and the popular pre-train and fine-tune paradigm, we survey promising approaches for low-resource natural language processing. After a discussion about the different dimensions of data availability, we give a structured overview of methods that enable learning when training data is sparse. This includes mechanisms to create additional labeled data like data augmentation and distant supervision as well as transfer learning settings that reduce the need for target supervision. A goal of our survey is to explain how these methods differ in their requirements as understanding them is essential for choosing a technique suited for a specific low-resource setting. Further key aspects of this work are to highlight open issues and to outline promising directions for future research.
Unsupervised neural machine translation (UNMT) that relies solely on massive monolingual corpora has achieved remarkable results in several translation tasks. However, in real-world scenarios, massive monolingual corpora do not exist for some extreme ly low-resource languages such as Estonian, and UNMT systems usually perform poorly when there is not adequate training corpus for one language. In this paper, we first define and analyze the unbalanced training data scenario for UNMT. Based on this scenario, we propose UNMT self-training mechanisms to train a robust UNMT system and improve its performance in this case. Experimental results on several language pairs show that the proposed methods substantially outperform conventional UNMT systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا