تستخدم منتديات سوق Darknet في كثير من الأحيان لتبادل السلع والخدمات غير القانونية بين الأطراف التي تستخدم التشفير لإخفاء هوياتها.يتم استخدام شبكة Tor لاستضافة هذه الأسواق، والتي تضمن إخفاء هويتها الإضافي من IP وتتبع الموقع، مما يجعل من الصعب الارتباط عبر المستخدمين الخبيثة باستخدام حسابات متعددة (Sybils).بالإضافة إلى ذلك، يهاجر المستخدمون إلى منتديات جديدة عندما يتم إغلاق المرء زيادة زيادة صعوبة ربط المستخدمين عبر منتديات متعددة.نقوم بتطوير نهج تعليم متعدد الأطباق المستند إلى المصممة على أساس التصديق على اللغة الطبيعية والتفاعلات النموذجية باستخدام Asceddings الرسم البياني لإنشاء تمثيلات منخفضة الأبعاد من حلقات قصيرة لنشاط المستخدم لإسناد التأليف.نحن نقدم تقييم شامل لأساليبنا في أربع منتديات Darknet المختلفة التي توضح فعالتها على أحدث من الفن، مع رفع ما يصل إلى 2.5x في مرتبة الاسترجاع المتوسط و 2x على استدعاء @ 10.
Darknet market forums are frequently used to exchange illegal goods and services between parties who use encryption to conceal their identities. The Tor network is used to host these markets, which guarantees additional anonymization from IP and location tracking, making it challenging to link across malicious users using multiple accounts (sybils). Additionally, users migrate to new forums when one is closed further increasing the difficulty of linking users across multiple forums. We develop a novel stylometry-based multitask learning approach for natural language and model interactions using graph embeddings to construct low-dimensional representations of short episodes of user activity for authorship attribution. We provide a comprehensive evaluation of our methods across four different darknet forums demonstrating its efficacy over the state-of-the-art, with a lift of up to 2.5X on Mean Retrieval Rank and 2X on Recall@10.
References used
https://aclanthology.org/
It has been shown that training multi-task models with auxiliary tasks can improve the target task quality through cross-task transfer. However, the importance of each auxiliary task to the primary task is likely not known a priori. While the importa
We present our entry into the 2021 3C Shared Task Citation Context Classification based on Purpose competition. The goal of the competition is to classify a citation in a scientific article based on its purpose. This task is important because it coul
This paper explores the effect of using multitask learning for abstractive summarization in the context of small training corpora. In particular, we incorporate four different tasks (extractive summarization, language modeling, concept detection, and
This paper addresses the identification of toxic, engaging, and fact-claiming comments on social media. We used the dataset made available by the organizers of the GermEval2021 shared task containing over 3,000 manually annotated Facebook comments in
This paper introduces data on translation trainees' perceptions of the MTPE process and implications on training in this field. This study aims to analyse trainees' performance of three MTPE tasks the English-Polish language pair and post-tasks inter