تتناول هذه الورقة تحديد تعليقات سامة ومشاركة وتحقيق الحقائق على وسائل التواصل الاجتماعي.استخدمنا مجموعة البيانات المتاحة من قبل منظمي المهمة المشتركة Germeval2021 التي تحتوي على أكثر من 3000 تعليقات Facebook المزروعة يدويا باللغة الألمانية.بالنظر إلى رابط المهام الثلاث، اتصلنا بالمشكلة باستخدام نماذج محولات محول كبيرة مدربة مسبقا وتعلم التعدد المتعدد.تشير نتائجنا إلى أن التعلم المتعدد يحقق الأداء متفوقا على نهج التعلم المهمة الأكثر شيوعا في المهام الثلاثة.نقدم أفضل أنظمةنا إلى Germeval-2021 تحت اسم الفريق WLV-RIT.
This paper addresses the identification of toxic, engaging, and fact-claiming comments on social media. We used the dataset made available by the organizers of the GermEval2021 shared task containing over 3,000 manually annotated Facebook comments in German. Considering the relatedness of the three tasks, we approached the problem using large pre-trained transformer models and multitask learning. Our results indicate that multitask learning achieves performance superior to the more common single task learning approach in all three tasks. We submit our best systems to GermEval-2021 under the team name WLV-RIT.
References used
https://aclanthology.org/
In this paper we present UPAppliedCL's contribution to the GermEval 2021 Shared Task. In particular, we participated in Subtasks 2 (Engaging Comment Classification) and 3 (Fact-Claiming Comment Classification). While acceptable results can be obtaine
The availability of language representations learned by large pretrained neural network models (such as BERT and ELECTRA) has led to improvements in many downstream Natural Language Processing tasks in recent years. Pretrained models usually differ i
This paper describes our methods submitted for the GermEval 2021 shared task on identifying toxic, engaging and fact-claiming comments in social media texts (Risch et al., 2021). We explore simple strategies for semi-automatic generation of rule-base
In this paper, we report on our approach to addressing the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments for the German language. We submitted three runs for each subtask based on ensembles of three mo
We present the GermEval 2021 shared task on the identification of toxic, engaging, and fact-claiming comments. This shared task comprises three binary classification subtasks with the goal to identify: toxic comments, engaging comments, and comments