انفجرت الإجابة على الأسئلة المفتوحة في مجال الشعبية مؤخرا بسبب نجاح نماذج استرجاع كثيفة، والتي تجاوزت النماذج المتناقضة باستخدام بعض الأمثلة التدريبية الإشراف فقط. ومع ذلك، في هذه الورقة، نوضح النماذج الكثيفة الحالية ليست بعد الجراد المقدس من استرجاعها. نقوم أولا بإنشاء المنفيات، وهي مجموعة من الأسئلة البسيطة والغنية للكيان بناء على حقائق من Wikidata (على سبيل المثال، أين ولد الفرح؟ نحن نبحث في هذه القضية والكشف عن أن المستردات الكثيفة لا يمكن أن تعمم فقط إلى الكيانات المشتركة ما لم يلاحظ أن نمط السؤال صراحة أثناء التدريب. نحرق اثنين من الحلول البسيطة نحو معالجة هذه المشكلة الحاسمة. أولا، نوضح أن تكبير البيانات غير قادر على إصلاح مشكلة التعميم. ثانيا، نجيد أن تشفير مرور أكثر قوة يساعد في تسهيل التكيف بشكل أفضل باستخدام تشفير الأسئلة المتخصصة. نأمل أن يتم إلقاء عملنا الضوء على التحديات في إنشاء مسترد كثيف قوي، يعمل بشكل جيد عبر توزيعات المدخلات المختلفة.
Open-domain question answering has exploded in popularity recently due to the success of dense retrieval models, which have surpassed sparse models using only a few supervised training examples. However, in this paper, we demonstrate current dense models are not yet the holy grail of retrieval. We first construct EntityQuestions, a set of simple, entity-rich questions based on facts from Wikidata (e.g., Where was Arve Furset born?''), and observe that dense retrievers drastically under-perform sparse methods. We investigate this issue and uncover that dense retrievers can only generalize to common entities unless the question pattern is explicitly observed during training. We discuss two simple solutions towards addressing this critical problem. First, we demonstrate that data augmentation is unable to fix the generalization problem. Second, we argue a more robust passage encoder helps facilitate better question adaptation using specialized question encoders. We hope our work can shed light on the challenges in creating a robust, universal dense retriever that works well across different input distributions.
References used
https://aclanthology.org/
Dense retrieval has shown great success for passage ranking in English. However, its effectiveness for non-English languages remains unexplored due to limitation in training resources. In this work, we explore different transfer techniques for docume
To audit the robustness of named entity recognition (NER) models, we propose RockNER, a simple yet effective method to create natural adversarial examples. Specifically, at the entity level, we replace target entities with other entities of the same
Cross-lingual entity alignment (EA) aims to find the equivalent entities between crosslingual KGs (Knowledge Graphs), which is a crucial step for integrating KGs. Recently, many GNN-based EA methods are proposed and show decent performance improvemen
Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resour
Abstract We study learning named entity recognizers in the presence of missing entity annotations. We approach this setting as tagging with latent variables and propose a novel loss, the Expected Entity Ratio, to learn models in the presence of syste