لتدقيق متانة نماذج التعرف على الكيان المسماة (NER)، نقترح روكر، وسيلة بسيطة ولكنها فعالة لإنشاء أمثلة خصومة طبيعية. على وجه التحديد، على مستوى الكيان، نحل محل الكيانات المستهدفة مع كيانات أخرى من نفس الطبقة الدلالية في ويكيداتا؛ على مستوى السياق، نستخدم نماذج اللغة المدربة مسبقا (E.G.، Bert) لتوليد بدائل النصية. معا، تنتج مستويين AT- TACH أمثلة مخدرة طبيعية تؤدي إلى توزيع تحول من البيانات التدريبية التي تم تدريب نماذجنا المستهدفة عليها. نحن نطبق الطريقة المقترحة على مجموعة بيانات Ontonotes وإنشاء معيار جديد يدعى OnTorock لتقييم متانة النماذج NER الحالية عبر بروتوكول تقييم منهجي. تجاربنا وتحليلنا تكشف أنه حتى أفضل نموذج له انخفاض كبير في الأداء، ويبدو أن هذه النماذج تحفز أنماط كيان داخل المجال بدلا من التفكير من السياق. يدرس عملنا أيضا آثار عدد قليل من أساليب تكبير البيانات البسيطة لتحسين متانة نماذج NER.
To audit the robustness of named entity recognition (NER) models, we propose RockNER, a simple yet effective method to create natural adversarial examples. Specifically, at the entity level, we replace target entities with other entities of the same semantic class in Wikidata; at the context level, we use pre-trained language models (e.g., BERT) to generate word substitutions. Together, the two levels of at- tack produce natural adversarial examples that result in a shifted distribution from the training data on which our target models have been trained. We apply the proposed method to the OntoNotes dataset and create a new benchmark named OntoRock for evaluating the robustness of existing NER models via a systematic evaluation protocol. Our experiments and analysis reveal that even the best model has a significant performance drop, and these models seem to memorize in-domain entity patterns instead of reasoning from the context. Our work also studies the effects of a few simple data augmentation methods to improve the robustness of NER models.
References used
https://aclanthology.org/
Abstract We take a step towards addressing the under- representation of the African continent in NLP research by bringing together different stakeholders to create the first large, publicly available, high-quality dataset for named entity recognition
Current work in named entity recognition (NER) shows that data augmentation techniques can produce more robust models. However, most existing techniques focus on augmenting in-domain data in low-resource scenarios where annotated data is quite limite
Abstract In this work, we examine the ability of NER models to use contextual information when predicting the type of an ambiguous entity. We introduce NRB, a new testbed carefully designed to diagnose Name Regularity Bias of NER models. Our results
We explore the application of state-of-the-art NER algorithms to ASR-generated call center transcripts. Previous work in this domain focused on the use of a BiLSTM-CRF model which relied on Flair embeddings; however, such a model is unwieldy in terms
To address a looming crisis of unreproducible evaluation for named entity recognition, we propose guidelines and introduce SeqScore, a software package to improve reproducibility. The guidelines we propose are extremely simple and center around trans