يجب أن تكون أنظمة معالجة اللغة الطبيعية مثل وكلاء الحوار قادرة على سبب معتقدات الآخرين ونواياهم ورغباتهم. هذه القدرة، التي تسمى نظرية العقل (توم)، أمر بالغ الأهمية، حيث تتيح نموذج للتنبؤ وتفسير احتياجات المستخدمين بناء على حالاتهم العقلية. يقيم خط الأبحاث الحديث إمكانية توم من النماذج العصبية المعززة بالذاكرة الحالية من خلال الإجابة على السؤال. تؤدي هذه النماذج بشكل سيء على مهام الاعتقاد الكاذبة حيث تختلف المعتقدات عن الواقع، خاصة عندما تحتوي مجموعة البيانات على جمل مشتتة. في هذه الورقة، نقترح نهجا جديدا مستنرا مؤقتا لتحسين قدرة توم النماذج العصبية المعززة بالذاكرة. يتضمن نموذجنا بشعورا حول عقول الكيانات وتتبع حالاتهم العقلية لأنهم يتطورون بمرور الوقت من خلال مرور موسع. ثم يستجيب للاستعلامات من خلال السفر النصي - I.E.، عن طريق الوصول إلى الذاكرة المخزنة لخطوة زمنية سابقة. نقوم بتقييم نموذجنا على TOM Datasets ويجد أن هذا النهج يحسن الأداء، خاصة من خلال تصحيح الحالات الذهنية المتوقعة مطابقة الاعتقاد الخاطئ.
Natural language processing systems such as dialogue agents should be able to reason about other people's beliefs, intentions and desires. This capability, called theory of mind (ToM), is crucial, as it allows a model to predict and interpret the needs of users based on their mental states. A recent line of research evaluates the ToM capability of existing memory-augmented neural models through question-answering. These models perform poorly on false belief tasks where beliefs differ from reality, especially when the dataset contains distracting sentences. In this paper, we propose a new temporally informed approach for improving the ToM capability of memory-augmented neural models. Our model incorporates priors about the entities' minds and tracks their mental states as they evolve over time through an extended passage. It then responds to queries through textual time travel--i.e., by accessing the stored memory of an earlier time step. We evaluate our model on ToM datasets and find that this approach improves performance, particularly by correcting the predicted mental states to match the false belief.
References used
https://aclanthology.org/
An ideal integration of autonomous agents in a human world implies that they are able to collaborate on human terms. In particular, theory of mind plays an important role in maintaining common ground during human collaboration and communication. To e
Much of the progress in contemporary NLP has come from learning representations, such as masked language model (MLM) contextual embeddings, that turn challenging problems into simple classification tasks. But how do we quantify and explain this effec
We propose using a multilabel probing task to assess the morphosyntactic representations of multilingual word embeddings. This tweak on canonical probing makes it easy to explore morphosyntactic representations, both holistically and at the level of
Adversarial examples expose the vulnerabilities of natural language processing (NLP) models, and can be used to evaluate and improve their robustness. Existing techniques of generating such examples are typically driven by local heuristic rules that
We consider the task of linking social media accounts that belong to the same author in an automated fashion on the basis of the content and meta-data of the corresponding document streams. We focus on learning an embedding that maps variable-sized s