Do you want to publish a course? Click here

Large-Scale Relation Learning for Question Answering over Knowledge Bases with Pre-trained Language Models

التعلم علاقة واسعة النطاق عن السؤال حول قواعد المعرفة مع نماذج اللغة المدربة مسبقا

324   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The key challenge of question answering over knowledge bases (KBQA) is the inconsistency between the natural language questions and the reasoning paths in the knowledge base (KB). Recent graph-based KBQA methods are good at grasping the topological structure of the graph but often ignore the textual information carried by the nodes and edges. Meanwhile, pre-trained language models learn massive open-world knowledge from the large corpus, but it is in the natural language form and not structured. To bridge the gap between the natural language and the structured KB, we propose three relation learning tasks for BERT-based KBQA, including relation extraction, relation matching, and relation reasoning. By relation-augmented training, the model learns to align the natural language expressions to the relations in the KB as well as reason over the missing connections in the KB. Experiments on WebQSP show that our method consistently outperforms other baselines, especially when the KB is incomplete.

References used
https://aclanthology.org/
rate research

Read More

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. Here we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph-based message passing. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.
Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words i n pre-training could further improve the performance of PrLMs. However, given that span-level clues are introduced and fixed in pre-training, previous methods are time-consuming and lack of flexibility. To alleviate the inconvenience, this paper presents a novel span fine-tuning method for PrLMs, which facilitates the span setting to be adaptively determined by specific downstream tasks during the fine-tuning phase. In detail, any sentences processed by the PrLM will be segmented into multiple spans according to a pre-sampled dictionary. Then the segmentation information will be sent through a hierarchical CNN module together with the representation outputs of the PrLM and ultimately generate a span-enhanced representation. Experiments on GLUE benchmark show that the proposed span fine-tuning method significantly enhances the PrLM, and at the same time, offer more flexibility in an efficient way.
Large-scale language models such as GPT-3 are excellent few-shot learners, allowing them to be controlled via natural text prompts. Recent studies report that prompt-based direct classification eliminates the need for fine-tuning but lacks data and i nference scalability. This paper proposes a novel data augmentation technique that leverages large-scale language models to generate realistic text samples from a mixture of real samples. We also propose utilizing soft-labels predicted by the language models, effectively distilling knowledge from the large-scale language models and creating textual perturbations simultaneously. We perform data augmentation experiments on diverse classification tasks and show that our method hugely outperforms existing text augmentation methods. We also conduct experiments on our newly proposed benchmark to show that the augmentation effect is not only attributed to memorization. Further ablation studies and a qualitative analysis provide more insights into our approach.
Pre-trained language models have achieved huge success on a wide range of NLP tasks. However, contextual representations from pre-trained models contain entangled semantic and syntactic information, and therefore cannot be directly used to derive use ful semantic sentence embeddings for some tasks. Paraphrase pairs offer an effective way of learning the distinction between semantics and syntax, as they naturally share semantics and often vary in syntax. In this work, we present ParaBART, a semantic sentence embedding model that learns to disentangle semantics and syntax in sentence embeddings obtained by pre-trained language models. ParaBART is trained to perform syntax-guided paraphrasing, based on a source sentence that shares semantics with the target paraphrase, and a parse tree that specifies the target syntax. In this way, ParaBART learns disentangled semantic and syntactic representations from their respective inputs with separate encoders. Experiments in English show that ParaBART outperforms state-of-the-art sentence embedding models on unsupervised semantic similarity tasks. Additionally, we show that our approach can effectively remove syntactic information from semantic sentence embeddings, leading to better robustness against syntactic variation on downstream semantic tasks.
Emotion is fundamental to humanity. The ability to perceive, understand and respond to social interactions in a human-like manner is one of the most desired capabilities in artificial agents, particularly in social-media bots. Over the past few years , computational understanding and detection of emotional aspects in language have been vital in advancing human-computer interaction. The WASSA Shared Task 2021 released a dataset of news-stories across two tracks, Track-1 for Empathy and Distress Prediction and Track-2 for Multi-Dimension Emotion prediction at the essay-level. We describe our system entry for the WASSA 2021 Shared Task (for both Track-1 and Track-2), where we leveraged the information from Pre-trained language models for Track-specific Tasks. Our proposed models achieved an Average Pearson Score of 0.417, and a Macro-F1 Score of 0.502 in Track 1 and Track 2, respectively. In the Shared Task leaderboard, we secured the fourth rank in Track 1 and the second rank in Track 2.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا