العاطفة أساسية للإنسانية.تعد القدرة على إدراك التفاعلات الاجتماعية وتفهمها والاستجابة لها بطريقة تشبه الإنسان واحدة من أكثر القدرات المرجوة في الوكلاء الاصطناعي، خاصة في روبوتات الوسائط الاجتماعية.خلال السنوات القليلة الماضية، كانت التفاهم الحاسوبية والكشف عن الجوانب العاطفية في اللغة حيوية في تقدم التفاعل بين الإنسان والحاسوب.أصدرت المهمة المشتركة WASSA 2021 مجموعة بيانات من قصص الأخبار عبر مسارين، وتتبع 1 لتنبؤ التعاطف والمساء والمسار - 2 لتنبؤ العاطفة متعددة الأبعاد على مستوى المقال.نحن نصف إدخال نظامنا للمهمة المشتركة Wassa 2021 (لكل من المسار-1 والمسار -2)، حيث نستفيد من المعلومات من نماذج اللغة المدربة مسبقا للمهام الخاصة بالمسار.حققت نماذجنا المقترحة درجة متوسط بيرسون من 0.417، ونتيجة ماكرو F1 من 0.502 في المسار 1 والمسار 2، على التوالي.في لوحة المهمة المشتركة، حصلنا على المرتبة الرابعة في المسار 1 والمرتبة الثانية في المسار 2.
Emotion is fundamental to humanity. The ability to perceive, understand and respond to social interactions in a human-like manner is one of the most desired capabilities in artificial agents, particularly in social-media bots. Over the past few years, computational understanding and detection of emotional aspects in language have been vital in advancing human-computer interaction. The WASSA Shared Task 2021 released a dataset of news-stories across two tracks, Track-1 for Empathy and Distress Prediction and Track-2 for Multi-Dimension Emotion prediction at the essay-level. We describe our system entry for the WASSA 2021 Shared Task (for both Track-1 and Track-2), where we leveraged the information from Pre-trained language models for Track-specific Tasks. Our proposed models achieved an Average Pearson Score of 0.417, and a Macro-F1 Score of 0.502 in Track 1 and Track 2, respectively. In the Shared Task leaderboard, we secured the fourth rank in Track 1 and the second rank in Track 2.
References used
https://aclanthology.org/
This paper presents the results that were obtained from the WASSA 2021 shared task on predicting empathy and emotions. The participants were given access to a dataset comprising empathic reactions to news stories where harm is done to a person, group
We describe our participation in all the subtasks of the Germeval 2021 shared task on the identification of Toxic, Engaging, and Fact-Claiming Comments. Our system is an ensemble of state-of-the-art pre-trained models finetuned with carefully enginee
This paper describes our submission for the WASSA 2021 shared task regarding the prediction of empathy, distress and emotions from news stories. The solution is based on combining the frequency of words, lexicon-based information, demographics of the
Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words i
Pre-trained language models have achieved huge success on a wide range of NLP tasks. However, contextual representations from pre-trained models contain entangled semantic and syntactic information, and therefore cannot be directly used to derive use