يستخدم تطبيع المفهوم الطبي الحيوي (BCN) على نطاق واسع في معالجة النص الطبية الحيوية كوحدة أساسية.بسبب العديد من المتغيرات السطحية للمفاهيم الطبية الحيوية، لا يزال BCN صعبا وغير مستمر.في هذه الورقة، نمستحم فرطيات المفهوم الطبية الحيوية لتسهيل BCN.نقترح Norkizer مفهوم الطبية الطبية الحيوية مع فرط النعاطات (BCNH)، وهو إطار جديد يتبنى تدريبات قائمة في القائمة للاستفادة من كل من الارتباطات والنظارات المرادفات، وتوظف أيضا قيود المعايير على تمثيل أزواج كيان Hypernym-Hypernym-hyponymy.تظهر النتائج التجريبية أن BCNH تتفوق على نموذج الحالة السابقة في مجموعة بيانات NCBI.
Biomedical Concept Normalization (BCN) is widely used in biomedical text processing as a fundamental module. Owing to numerous surface variants of biomedical concepts, BCN still remains challenging and unsolved. In this paper, we exploit biomedical concept hypernyms to facilitate BCN. We propose Biomedical Concept Normalizer with Hypernyms (BCNH), a novel framework that adopts list-wise training to make use of both hypernyms and synonyms, and also employs norm constraint on the representation of hypernym-hyponym entity pairs. The experimental results show that BCNH outperforms the previous state-of-the-art model on the NCBI dataset.
References used
https://aclanthology.org/
Integrating knowledge into text is a promising way to enrich text representation, especially in the medical field. However, undifferentiated knowledge not only confuses the text representation but also imports unexpected noises. In this paper, to all
Due to large number of entities in biomedical knowledge bases, only a small fraction of entities have corresponding labelled training data. This necessitates entity linking models which are able to link mentions of unseen entities using learned repre
The number of biomedical documents is increasing rapidly. Accordingly, a demand for extracting knowledge from large-scale biomedical texts is also increasing. BERT-based models are known for their high performance in various tasks. However, it is oft
The domain-specialised application of Named Entity Recognition (NER) is known as Biomedical NER (BioNER), which aims to identify and classify biomedical concepts that are of interest to researchers, such as genes, proteins, chemical compounds, drugs,
The rapid growth in published clinical trials makes it difficult to maintain up-to-date systematic reviews, which require finding all relevant trials. This leads to policy and practice decisions based on out-of-date, incomplete, and biased subsets of