إن دمج المعرفة في نص هو وسيلة واعدة لإثراء التمثيل النصي، خاصة في المجال الطبي. ومع ذلك، فإن المعرفة غير المتمايزة لا تخلط بين تمثيل النص فحسب، بل تستورد أيضا ضوضاء غير متوقعة. في هذه الورقة، لتخفيف هذه المشكلة، نقترح الاستفادة من كبسولة التوجيه لربط المعرفة مع الأدب الطبي هرمي (يسمى Hicapsrkl). أولا، تستخرج Hicapsrkl شظايا نصية مصممة تجريبية من الأدب الطبي وتكررها في تمثيلات شظية على التوالي. ثانيا، يتم تطبيق خوارزمية التوجيه الكبسولة على تمثيلين شظيين. من خلال الحوسبة الكبسولة والتوجيه الديناميكي، تتم معالجة كل تمثيل في تمثيل جديد (يشار إليه كتمثيل قبعات)، ونحن ندمج تمثيلات قبعات ككبار معلومات للمعرفة العاملية بالأدب الطبي هرمي. أخيرا، يتم التحقق من صحة Hicapsrkl عند التنبؤ بالأهمية ومجموعات اختبار استرجاع الأدب الطبي. تظهر النتائج والتحليلات التجريبية أن Hicapsrklcan أكثر دقة المعرفة مع الأدب الطبي من الأساليب الرئيسية. باختصار، يمكن أن يساعد Hicapsrkl بكفاءة في اختيار المعرفة الأكثر صلة بالأدب الطبي، والتي قد تكون محاولة بديلة لتحسين تمثيل النص المستند إلى المعرفة. يتم إصدار شفرة المصدر على Github.
Integrating knowledge into text is a promising way to enrich text representation, especially in the medical field. However, undifferentiated knowledge not only confuses the text representation but also imports unexpected noises. In this paper, to alleviate this problem, we propose leveraging capsule routing to associate knowledge with medical literature hierarchically (called HiCapsRKL). Firstly, HiCapsRKL extracts two empirically designed text fragments from medical literature and encodes them into fragment representations respectively. Secondly, the capsule routing algorithm is applied to two fragment representations. Through the capsule computing and dynamic routing, each representation is processed into a new representation (denoted as caps-representation), and we integrate the caps-representations as information gain to associate knowledge with medical literature hierarchically. Finally, HiCapsRKL are validated on relevance prediction and medical literature retrieval test sets. The experimental results and analyses show that HiCapsRKLcan more accurately associate knowledge with medical literature than mainstream methods. In summary, HiCapsRKL can efficiently help selecting the most relevant knowledge to the medical literature, which may be an alternative attempt to improve knowledge-based text representation. Source code is released on GitHub.
References used
https://aclanthology.org/
In parataxis languages like Chinese, word meanings are constructed using specific word-formations, which can help to disambiguate word senses. However, such knowledge is rarely explored in previous word sense disambiguation (WSD) methods. In this pap
This paper presents the preliminary results of an ongoing project that analyzes the growing body of scientific research published around the COVID-19 pandemic. In this research, a general-purpose semantic model is used to double annotate a batch of 5
Biomedical Concept Normalization (BCN) is widely used in biomedical text processing as a fundamental module. Owing to numerous surface variants of biomedical concepts, BCN still remains challenging and unsolved. In this paper, we exploit biomedical c
Healthcare is becoming a more and more important research topic recently. With the growing data in the healthcare domain, it offers a great opportunity for deep learning to improve the quality of service and reduce costs. However, the complexity of e
To combat COVID-19, both clinicians and scientists need to digest the vast amount of relevant biomedical knowledge in literature to understand the disease mechanism and the related biological functions. We have developed a novel and comprehensive kno