Do you want to publish a course? Click here

A Novel Global Feature-Oriented Relational Triple Extraction Model based on Table Filling

نموذج استخراج ثلاثي ثلاثي الطاولة على أساس تعبئة الجدول

170   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Table filling based relational triple extraction methods are attracting growing research interests due to their promising performance and their abilities on extracting triples from complex sentences. However, this kind of methods are far from their full potential because most of them only focus on using local features but ignore the global associations of relations and of token pairs, which increases the possibility of overlooking some important information during triple extraction. To overcome this deficiency, we propose a global feature-oriented triple extraction model that makes full use of the mentioned two kinds of global associations. Specifically, we first generate a table feature for each relation. Then two kinds of global associations are mined from the generated table features. Next, the mined global associations are integrated into the table feature of each relation. This generate-mine-integrate'' process is performed multiple times so that the table feature of each relation is refined step by step. Finally, each relation's table is filled based on its refined table feature, and all triples linked to this relation are extracted based on its filled table. We evaluate the proposed model on three benchmark datasets. Experimental results show our model is effective and it achieves state-of-the-art results on all of these datasets. The source code of our work is available at: https://github.com/neukg/GRTE.

References used
https://aclanthology.org/
rate research

Read More

Tables provide valuable knowledge that can be used to verify textual statements. While a number of works have considered table-based fact verification, direct alignments of tabular data with tokens in textual statements are rarely available. Moreover , training a generalized fact verification model requires abundant labeled training data. In this paper, we propose a novel system to address these problems. Inspired by counterfactual causality, our system identifies token-level salience in the statement with probing-based salience estimation. Salience estimation allows enhanced learning of fact verification from two perspectives. From one perspective, our system conducts masked salient token prediction to enhance the model for alignment and reasoning between the table and the statement. From the other perspective, our system applies salience-aware data augmentation to generate a more diverse set of training instances by replacing non-salient terms. Experimental results on TabFact show the effective improvement by the proposed salience-aware learning techniques, leading to the new SOTA performance on the benchmark.
Timeline Summarization identifies major events from a news collection and describes them following temporal order, with key dates tagged. Previous methods generally generate summaries separately for each date after they determine the key dates of eve nts. These methods overlook the events' intra-structures (arguments) and inter-structures (event-event connections). Following a different route, we propose to represent the news articles as an event-graph, thus the summarization becomes compressing the whole graph to its salient sub-graph. The key hypothesis is that the events connected through shared arguments and temporal order depict the skeleton of a timeline, containing events that are semantically related, temporally coherent and structurally salient in the global event graph. A time-aware optimal transport distance is then introduced for learning the compression model in an unsupervised manner. We show that our approach significantly improves on the state of the art on three real-world datasets, including two public standard benchmarks and our newly collected Timeline100 dataset.
We cast a suite of information extraction tasks into a text-to-triple translation framework. Instead of solving each task relying on task-specific datasets and models, we formalize the task as a translation between task-specific input text and output triples. By taking the task-specific input, we enable a task-agnostic translation by leveraging the latent knowledge that a pre-trained language model has about the task. We further demonstrate that a simple pre-training task of predicting which relational information corresponds to which input text is an effective way to produce task-specific outputs. This enables the zero-shot transfer of our framework to downstream tasks. We study the zero-shot performance of this framework on open information extraction (OIE2016, NYT, WEB, PENN), relation classification (FewRel and TACRED), and factual probe (Google-RE and T-REx). The model transfers non-trivially to most tasks and is often competitive with a fully supervised method without the need for any task-specific training. For instance, we significantly outperform the F1 score of the supervised open information extraction without needing to use its training set.
In this work, three new compounds of benzoxazine monomers were synthesized based on (phenol, hydroquinone, 2-naphthol) and triethoxysilyl propyl amine (TESPA) and paraformaldehyde. (TESPA) were used to study its effect on the thermal stability of polybenzoxazine resulting from the ring opening polymerization of prepared monomers.
Weakly-supervised table question-answering (TableQA) models have achieved state-of-art performance by using pre-trained BERT transformer to jointly encoding a question and a table to produce structured query for the question. However, in practical se ttings TableQA systems are deployed over table corpora having topic and word distributions quite distinct from BERT's pretraining corpus. In this work we simulate the practical topic shift scenario by designing novel challenge benchmarks WikiSQL-TS and WikiTable-TS, consisting of train-dev-test splits in five distinct topic groups, based on the popular WikiSQL and WikiTable-Questions datasets. We empirically show that, despite pre-training on large open-domain text, performance of models degrades significantly when they are evaluated on unseen topics. In response, we propose T3QA (Topic Transferable Table Question Answering) a pragmatic adaptation framework for TableQA comprising of: (1) topic-specific vocabulary injection into BERT, (2) a novel text-to-text transformer generator (such as T5, GPT2) based natural language question generation pipeline focused on generating topic-specific training data, and (3) a logical form re-ranker. We show that T3QA provides a reasonably good baseline for our topic shift benchmarks. We believe our topic split benchmarks will lead to robust TableQA solutions that are better suited for practical deployment

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا