Do you want to publish a course? Click here

RankNAS: Efficient Neural Architecture Search by Pairwise Ranking

الرحلة: البحث العماري العصبي الفعال البحث عن طريق الترتيب الزوجي

633   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper addresses the efficiency challenge of Neural Architecture Search (NAS) by formulating the task as a ranking problem. Previous methods require numerous training examples to estimate the accurate performance of architectures, although the actual goal is to find the distinction between good'' and bad'' candidates. Here we do not resort to performance predictors. Instead, we propose a performance ranking method (RankNAS) via pairwise ranking. It enables efficient architecture search using much fewer training examples. Moreover, we develop an architecture selection method to prune the search space and concentrate on more promising candidates. Extensive experiments on machine translation and language modeling tasks show that RankNAS can design high-performance architectures while being orders of magnitude faster than state-of-the-art NAS systems.



References used
https://aclanthology.org/
rate research

Read More

Computational models of human language often involve combinatorial problems. For instance, a probabilistic parser may marginalize over exponentially many trees to make predictions. Algorithms for such problems often employ dynamic programming and are not always unique. Finding one with optimal asymptotic runtime can be unintuitive, time-consuming, and error-prone. Our work aims to automate this laborious process. Given an initial correct declarative program, we search for a sequence of semantics-preserving transformations to improve its running time as much as possible. To this end, we describe a set of program transformations, a simple metric for assessing the efficiency of a transformed program, and a heuristic search procedure to improve this metric. We show that in practice, automated search---like the mental search performed by human programmers---can find substantial improvements to the initial program. Empirically, we show that many speed-ups described in the NLP literature could have been discovered automatically by our system.
Query rewrite (QR) is an emerging component in conversational AI systems, reducing user defect. User defect is caused by various reasons, such as errors in the spoken dialogue system, users' slips of the tongue or their abridged language. Many of the user defects stem from personalized factors, such as user's speech pattern, dialect, or preferences. In this work, we propose a personalized search-based QR framework, which focuses on automatic reduction of user defect. We build a personalized index for each user, which encompasses diverse affinity layers to reflect personal preferences for each user in the conversational AI. Our personalized QR system contains retrieval and ranking layers. Supported by user feedback based learning, training our models does not require hand-annotated data. Experiments on personalized test set showed that our personalized QR system is able to correct systematic and user errors by utilizing phonetic and semantic inputs.
In this research, we are studying the possibility of contribution in solving the Vehicle Routing Problem with Time Windows(VRPTW),that is one of the optimization problems of the NP-hard type. Moreover, Hybrid algorithm (HA) provided that integrate s between Tabu Search Algorithm and Guided Local Search algorithm And existence 2- Opt Local Search, based on the savings algorithm in terms of continued of a particular objective to provide a lot of savings. As we will compare the presented approach with standard tests to demonstrate the efficiency, and their impact on the quality of the solution in terms of speed of convergence and the ability to find better solutions.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا