مربع الحوار هو كتلة لبناء أساسية لتفاعلات اللغة البشرية البشرية.يحتوي على كلمات متعددة الأحزاب المستخدمة لنقل المعلومات من طرف إلى آخر بطريقة ديناميكية ومتطورة.إن القدرة على مقارنة الحوار هي مفيدة في العديد من حالات استخدام العالم الحقيقي، مثل تحليلات المحادثة لمكالمات مركز الاتصال وتصميم الوكيل الظاهري.نقترح تكيف جديد من أداة تحرير المسافة إلى سيناريو تشابه الحوار.يأخذ نهجنا في الاعتبار مختلف جوانب المحادثة مثل دلالات الكلام وتدفق المحادثة والمشاركين.نقيم هذا النهج الجديد ومقارنة مع تدابير التشابه الوثيقة الحالية على مجموعة من مجموعات البيانات الخاصة بالجملي.توضح النتائج أن أسلوبنا تتفوق على النهج الأخرى في اتخاذ تدفق حوار الاستسلام، ومن الأفضل أن يتماشى مع التصور البشري لمشاكل المحادثة.
Dialog is a core building block of human natural language interactions. It contains multi-party utterances used to convey information from one party to another in a dynamic and evolving manner. The ability to compare dialogs is beneficial in many real world use cases, such as conversation analytics for contact center calls and virtual agent design. We propose a novel adaptation of the edit distance metric to the scenario of dialog similarity. Our approach takes into account various conversation aspects such as utterance semantics, conversation flow, and the participants. We evaluate this new approach and compare it to existing document similarity measures on two publicly available datasets. The results demonstrate that our method outperforms the other approaches in capturing dialog flow, and is better aligned with the human perception of conversation similarity.
References used
https://aclanthology.org/
Reliable automatic evaluation of dialogue systems under an interactive environment has long been overdue. An ideal environment for evaluating dialog systems, also known as the Turing test, needs to involve human interaction, which is usually not affo
Despite the remarkable progress in the field of computational argumentation, dialogue systems concerned with argumentative tasks often rely on structured knowledge about arguments and their relations. Since the manual acquisition of these argument st
Abstract Several metrics have been proposed for assessing the similarity of (abstract) meaning representations (AMRs), but little is known about how they relate to human similarity ratings. Moreover, the current metrics have complementary strengths a
Post processing is the most conventional approach for correcting errors that are caused by Optical Character Recognition(OCR) systems. Two steps are usually taken to correct OCR errors: detection and corrections. For the first task, supervised machin
Conditioned dialogue generation suffers from the scarcity of labeled responses. In this work, we exploit labeled non-dialogue text data related to the condition, which are much easier to collect. We propose a multi-task learning approach to leverage