يعد Growdsourcing من غير الخبراء أحد أكثر الطرق شيوعا لجمع البيانات والشروح في NLP. على الرغم من أن هذه الأداة الأساسية في NLP، إلا أن استخدام الجماعة الجماعية يسترشد إلى حد كبير بالممارسات المشتركة والخبرة الشخصية للباحثين. يظل تطوير نظرية الاستخدام الجماعي لمشاكل اللغة العملية تحديا مفتوحا. ومع ذلك، هناك العديد من المبادئ والممارسات التي أثبتت فعاليتها في توليد بيانات عالية الجودة ومتنوعة. يعرض هذا البرنامج التعليمي الباحثين NLP إلى هذه الأساليب والمبادئ الجماعية لجمع البيانات هذه من خلال مناقشة مفصلة لمجموعة متنوعة من دراسات الحالة. يركز اختيار دراسات الحالة على الإعدادات الصعبة حيث يطلب من الجمهور أن يكتب النص الأصلي أو أداء العمل غير المقيد نسبيا. من خلال دراسات الحالة هذه، نناقش في عمليات تفصيلية مصممة بعناية لتحقيق البيانات ذات الخصائص المحددة، على سبيل المثال تتطلب الاستدلال المنطقي أو التفكير الأساسي أو فهم المحادثة. تركز كل دراسة حالة على تفاصيل بروتوكول جمع البيانات التابعة للبيانات التي غالبا ما تتلقى اهتماما محدودا في العروض البحثية البحثية، على سبيل المثال في المؤتمرات، ولكنها حاسمة لنجاح البحث.
Crowdsourcing from non-experts is one of the most common approaches to collecting data and annotations in NLP. Even though it is such a fundamental tool in NLP, crowdsourcing use is largely guided by common practices and the personal experience of researchers. Developing a theory of crowdsourcing use for practical language problems remains an open challenge. However, there are various principles and practices that have proven effective in generating high quality and diverse data. This tutorial exposes NLP researchers to such data collection crowdsourcing methods and principles through a detailed discussion of a diverse set of case studies. The selection of case studies focuses on challenging settings where crowdworkers are asked to write original text or otherwise perform relatively unconstrained work. Through these case studies, we discuss in detail processes that were carefully designed to achieve data with specific properties, for example to require logical inference, grounded reasoning or conversational understanding. Each case study focuses on data collection crowdsourcing protocol details that often receive limited attention in research presentations, for example in conferences, but are critical for research success.
References used
https://aclanthology.org/
We study the task of labeling covert or veiled toxicity in online conversations. Prior research has highlighted the difficulty in creating language models that recognize nuanced toxicity such as microaggressions. Our investigations further underscore
Universal Conceptual Cognitive Annotation (UCCA) is a semantic annotation scheme that organizes texts into coarse predicate-argument structure, offering broad coverage of semantic phenomena. At the same time, there is still need for a finer-grained t
Many crowdsourced NLP datasets contain systematic artifacts that are identified only after data collection is complete. Earlier identification of these issues should make it easier to create high-quality training and evaluation data. We attempt this
Computational resources such as semantically annotated corpora can play an important role in enabling speakers of indigenous minority languages to participate in government, education, and other domains of public life in their own language. However,
This survey/position paper discusses ways to improve coverage of resources such as WordNet. Rapp estimated correlations, rho, between corpus statistics and pyscholinguistic norms. rho improves with quantity (corpus size) and quality (balance). 1M wor