نحن ندرس مهمة وضع العلامات السرية أو السمية المحجوبة في المحادثات عبر الإنترنت.أبرز البحث المسبق الصعوبة في إنشاء نماذج اللغة التي تعترف بالسمية الدقيقة مثل الأصغرات.تؤكد تحقيقاتنا بشكل أكبر على صعوبة تحليل هذه الملصقات بشكل موثوق من الفئات الجماعية عبر الجماعة الجماعية.نقدم مجموعة بيانات أولية، وسمية coverttox، والتي تهدف إلى تحديد وتصنيف هذه التعليقات من قالب Rater المكرر.أخيرا، نحن نغلق نموذج Bert Transk-Domain Bert لتصنيف تعليقات هجومية سائبة ومقارنة مع خطوط الأساس الحالية.
We study the task of labeling covert or veiled toxicity in online conversations. Prior research has highlighted the difficulty in creating language models that recognize nuanced toxicity such as microaggressions. Our investigations further underscore the difficulty in parsing such labels reliably from raters via crowdsourcing. We introduce an initial dataset, COVERTTOXICITY, which aims to identify and categorize such comments from a refined rater template. Finally, we fine-tune a comment-domain BERT model to classify covertly offensive comments and compare against existing baselines.
References used
https://aclanthology.org/
Crowdsourcing from non-experts is one of the most common approaches to collecting data and annotations in NLP. Even though it is such a fundamental tool in NLP, crowdsourcing use is largely guided by common practices and the personal experience of re
This paper demonstrates that aggregating crowdsourced forecasts benefits from modeling the written justifications provided by forecasters. Our experiments show that the majority and weighted vote baselines are competitive, and that the written justif
While many NLP pipelines assume raw, clean texts, many texts we encounter in the wild, including a vast majority of legal documents, are not so clean, with many of them being visually structured documents (VSDs) such as PDFs. Conventional preprocessi
Social network platforms are generally used to share positive, constructive, and insightful content. However, in recent times, people often get exposed to objectionable content like threat, identity attacks, hate speech, insults, obscene texts, offen
In this paper, we focus on improving the quality of the summary generated by neural abstractive dialogue summarization systems. Even though pre-trained language models generate well-constructed and promising results, it is still challenging to summar