البنية القياسية المستخدمة في التعليمات التالية غالبا ما تكافح على تركيبات رواية من الفئة (E.G. التنقل إلى المعالم أو التقاط الأشياء) لاحظت أثناء التدريب.نقترح هندسة معيارية لاتباع تعليمات اللغة الطبيعية التي تصف تسلسلات فرعية متنوعة.في نهجنا، فروع الوحدات الفرعية تنفذ كل تعليمات لغة طبيعية لنوع فرعي محدد.يتم اختيار تسلسل من الوحدات النمطية للتنفيذ عن طريق تعلم تقسيم التعليمات والتنبؤ بنوع فرعي لكل شريحة.بالمقارنة مع أساليب التسلسل القياسية وغير المعيارية إلى التسلسل على Alfred، وهي تعليم صعبة بعد المعيار، نجد أن التجديف يحسن التعميم على التراكيب الفرعية الجديدة، وكذلك في البيئات غير المرئية في التدريب.
Standard architectures used in instruction following often struggle on novel compositions of subgoals (e.g. navigating to landmarks or picking up objects) observed during training. We propose a modular architecture for following natural language instructions that describe sequences of diverse subgoals. In our approach, subgoal modules each carry out natural language instructions for a specific subgoal type. A sequence of modules to execute is chosen by learning to segment the instructions and predicting a subgoal type for each segment. When compared to standard, non-modular sequence-to-sequence approaches on ALFRED, a challenging instruction following benchmark, we find that modularization improves generalization to novel subgoal compositions, as well as to environments unseen in training.
References used
https://aclanthology.org/
Executing natural language instructions in a physically grounded domain requires a model that understands both spatial concepts such as left of'' and above'', and the compositional language used to identify landmarks and articulate instructions relat
Understanding and executing natural language instructions in a grounded domain is one of the hallmarks of artificial intelligence. In this paper, we focus on instruction understanding in the blocks world domain and investigate the language understand
Humans are remarkably flexible when understanding new sentences that include combinations of concepts they have never encountered before. Recent work has shown that while deep networks can mimic some human language abilities when presented with novel
AM dependency parsing is a method for neural semantic graph parsing that exploits the principle of compositionality. While AM dependency parsers have been shown to be fast and accurate across several graphbanks, they require explicit annotations of t
Extracting relations across large text spans has been relatively underexplored in NLP, but it is particularly important for high-value domains such as biomedicine, where obtaining high recall of the latest findings is crucial for practical applicatio