Do you want to publish a course? Click here

Modular Networks for Compositional Instruction Following

شبكات وحدات للتعليمات التركيبية التالية

454   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Standard architectures used in instruction following often struggle on novel compositions of subgoals (e.g. navigating to landmarks or picking up objects) observed during training. We propose a modular architecture for following natural language instructions that describe sequences of diverse subgoals. In our approach, subgoal modules each carry out natural language instructions for a specific subgoal type. A sequence of modules to execute is chosen by learning to segment the instructions and predicting a subgoal type for each segment. When compared to standard, non-modular sequence-to-sequence approaches on ALFRED, a challenging instruction following benchmark, we find that modularization improves generalization to novel subgoal compositions, as well as to environments unseen in training.



References used
https://aclanthology.org/
rate research

Read More

Executing natural language instructions in a physically grounded domain requires a model that understands both spatial concepts such as left of'' and above'', and the compositional language used to identify landmarks and articulate instructions relat ive to them. In this paper, we study instruction understanding in the blocks world domain. Given an initial arrangement of blocks and a natural language instruction, the system executes the instruction by manipulating selected blocks. The highly compositional instructions are composed of atomic components and understanding these components is a necessary step to executing the instruction. We show that while end-to-end training (supervised only by the correct block location) fails to address the challenges of this task and performs poorly on instructions involving a single atomic component, knowledge-free auxiliary signals can be used to significantly improve performance by providing supervision for the instruction's components. Specifically, we generate signals that aim at helping the model gradually understand components of the compositional instructions, as well as those that help it better understand spatial concepts, and show their benefit to the overall task for two datasets and two state-of-the-art (SOTA) models, especially when the training data is limited---which is usual in such tasks.
Understanding and executing natural language instructions in a grounded domain is one of the hallmarks of artificial intelligence. In this paper, we focus on instruction understanding in the blocks world domain and investigate the language understand ing abilities of two top-performing systems for the task. We aim to understand if the test performance of these models indicates an understanding of the spatial domain and of the natural language instructions relative to it, or whether they merely over-fit spurious signals in the dataset. We formulate a set of expectations one might have from an instruction following model and concretely characterize the different dimensions of robustness such a model should possess. Despite decent test performance, we find that state-of-the-art models fall short of these expectations and are extremely brittle. We then propose a learning strategy that involves data augmentation and show through extensive experiments that the proposed learning strategy yields models that are competitive on the original test set while satisfying our expectations much better.
Humans are remarkably flexible when understanding new sentences that include combinations of concepts they have never encountered before. Recent work has shown that while deep networks can mimic some human language abilities when presented with novel sentences, systematic variation uncovers the limitations in the language-understanding abilities of networks. We demonstrate that these limitations can be overcome by addressing the generalization challenges in the gSCAN dataset, which explicitly measures how well an agent is able to interpret novel linguistic commands grounded in vision, e.g., novel pairings of adjectives and nouns. The key principle we employ is compositionality: that the compositional structure of networks should reflect the compositional structure of the problem domain they address, while allowing other parameters to be learned end-to-end. We build a general-purpose mechanism that enables agents to generalize their language understanding to compositional domains. Crucially, our network has the same state-of-the-art performance as prior work while generalizing its knowledge when prior work does not. Our network also provides a level of interpretability that enables users to inspect what each part of networks learns. Robust grounded language understanding without dramatic failures and without corner cases is critical to building safe and fair robots; we demonstrate the significant role that compositionality can play in achieving that goal.
AM dependency parsing is a method for neural semantic graph parsing that exploits the principle of compositionality. While AM dependency parsers have been shown to be fast and accurate across several graphbanks, they require explicit annotations of t he compositional tree structures for training. In the past, these were obtained using complex graphbank-specific heuristics written by experts. Here we show how they can instead be trained directly on the graphs with a neural latent-variable model, drastically reducing the amount and complexity of manual heuristics. We demonstrate that our model picks up on several linguistic phenomena on its own and achieves comparable accuracy to supervised training, greatly facilitating the use of AM dependency parsing for new sembanks.
Extracting relations across large text spans has been relatively underexplored in NLP, but it is particularly important for high-value domains such as biomedicine, where obtaining high recall of the latest findings is crucial for practical applicatio ns. Compared to conventional information extraction confined to short text spans, document-level relation extraction faces additional challenges in both inference and learning. Given longer text spans, state-of-the-art neural architectures are less effective and task-specific self-supervision such as distant supervision becomes very noisy. In this paper, we propose decomposing document-level relation extraction into relation detection and argument resolution, taking inspiration from Davidsonian semantics. This enables us to incorporate explicit discourse modeling and leverage modular self-supervision for each sub-problem, which is less noise-prone and can be further refined end-to-end via variational EM. We conduct a thorough evaluation in biomedical machine reading for precision oncology, where cross-paragraph relation mentions are prevalent. Our method outperforms prior state of the art, such as multi-scale learning and graph neural networks, by over 20 absolute F1 points. The gain is particularly pronounced among the most challenging relation instances whose arguments never co-occur in a paragraph.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا