تحتاج العديد من مهام NLP إلى إصدارات فعالة من الوثائق النصية.Arora et al.، 2017 توضح أن الشيخوخة المرجحة المرجحة بسيطة لنماذج Word بشكل متكرر في كثير من الأحيان نماذج. SCDV (MEKALA et al.، 2017) يمتد هذا من الجمل إلى DoCu-Mets عن طريق توظيف مجموعة ناعمة ومتخرفة على مجلات الكلمات المحسوبة مسبقا. كيف على الإطلاق، كلتا التقنيتين تتجاهل الشخصية السياقية Polysemyand للكلمات. في هذا القبيل، نتعامل مع هذه المشكلة عن طريق اقتراح CTXDV + Bert (CTXD)، وهو تمثيل بسيط وفعال للأمم المتحدة الذي يشتمل على مزين بالقدمين النصي (ديفلين وآخرون)، 2019 . WEShow أن تضميننا تضميننا أوريجيز نال SCDV، برت قبل قطار، وعدة أخرى على العديد من مجموعات بيانات التصنيف. Wealso إظهار تضميننا فعالا - نيس على مهام أخرى، مثل مفهوم مباراة جي ومشاكل تشابه. في الإضافة، نعرض أن Bertv + Bertperformsfine-Tune-Tune Bert و AP-PROACHES المختلفة AP-PROACHES في السيناريوهات ذات البيانات المحدودة أمثلة لقطات.
Several NLP tasks need the effective repre-sentation of text documents.Arora et al.,2017 demonstrate that simple weighted aver-aging of word vectors frequently outperformsneural models. SCDV (Mekala et al., 2017)further extends this from sentences to docu-ments by employing soft and sparse cluster-ing over pre-computed word vectors. How-ever, both techniques ignore the polysemyand contextual character of words.In thispaper, we address this issue by proposingSCDV+BERT(ctxd), a simple and effective un-supervised representation that combines con-textualized BERT (Devlin et al., 2019) basedword embedding for word sense disambigua-tion with SCDV soft clustering approach. Weshow that our embeddings outperform origi-nal SCDV, pre-train BERT, and several otherbaselines on many classification datasets. Wealso demonstrate our embeddings effective-ness on other tasks, such as concept match-ing and sentence similarity.In addition,we show that SCDV+BERT(ctxd) outperformsfine-tune BERT and different embedding ap-proaches in scenarios with limited data andonly few shots examples.
References used
https://aclanthology.org/
Recent progress in pretrained Transformer-based language models has shown great success in learning contextual representation of text. However, due to the quadratic self-attention complexity, most of the pretrained Transformers models can only handle
To highlight the challenges of achieving representation disentanglement for text domain in an unsupervised setting, in this paper we select a representative set of successfully applied models from the image domain. We evaluate these models on 6 disen
Unsupervised relation extraction works by clustering entity pairs that have the same relations in the text. Some existing variational autoencoder (VAE)-based approaches train the relation extraction model as an encoder that generates relation classif
In this paper, we present our contribution in SemEval-2021 Task 1: Lexical Complexity Prediction, where we integrate linguistic, statistical, and semantic properties of the target word and its context as features within a Machine Learning (ML) framew
The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose Hepos, a novel efficient encoder-decoder attention with head-wise positional strides t