تركز أنظمة الكشف عن الساركاز الموجودة على استغلال العلامات اللغوية أو السياق أو البثور على مستوى المستخدم.ومع ذلك، تشير الدراسات الاجتماعية إلى أن العلاقة بين المؤلف والجمهور يمكن أن تكون ذات صلة بنفس القدر لاستخدام السخرية وتفسيرها.في هذا العمل، نقترح إطارا بالاستفادة المشتركة (1) سياق مستخدم من تغريداتهم التاريخية مع (2) المعلومات الاجتماعية من الحي المحادثة للمستخدم في رسم بياني تفاعل، إلى السياق تفسير المنشور.نحن نستخدم شبكات انتباه الرسوم البيانية (GAT) عبر المستخدمين والتويت في مؤشر ترابط محادثة، جنبا إلى جنب مع تمثيلات سجل المستخدم الكثيفة.بصرف النظر عن تحقيق نتائج حديثة على مجموعة البيانات التي تم نشرها مؤخرا من مستخدمي Twitter الذي تم نشره مؤخرا مع تغريدات تسمية 30 ألفا، قم بإضافة تغريدات 10M Unabeled كسياق، تشير نتائجنا إلى أن النموذج يساهم في تفسير النوايا الساخرة للمؤلف أكثر منالتنبؤ بتصور السخرية من قبل الآخرين.
Existing sarcasm detection systems focus on exploiting linguistic markers, context, or user-level priors. However, social studies suggest that the relationship between the author and the audience can be equally relevant for the sarcasm usage and interpretation. In this work, we propose a framework jointly leveraging (1) a user context from their historical tweets together with (2) the social information from a user's conversational neighborhood in an interaction graph, to contextualize the interpretation of the post. We use graph attention networks (GAT) over users and tweets in a conversation thread, combined with dense user history representations. Apart from achieving state-of-the-art results on the recently published dataset of 19k Twitter users with 30K labeled tweets, adding 10M unlabeled tweets as context, our results indicate that the model contributes to interpreting the sarcastic intentions of an author more than to predicting the sarcasm perception by others.
References used
https://aclanthology.org/
Recent progress in pretrained Transformer-based language models has shown great success in learning contextual representation of text. However, due to the quadratic self-attention complexity, most of the pretrained Transformers models can only handle
External syntactic and semantic information has been largely ignored by existing neural coreference resolution models. In this paper, we present a heterogeneous graph-based model to incorporate syntactic and semantic structures of sentences. The prop
This paper describes our system for SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning. To accomplish this task, we utilize the Knowledge-Enhanced Graph Attention Network (KEGAT) architecture with a novel semantic space transformation str
The encoder--decoder framework achieves state-of-the-art results in keyphrase generation (KG) tasks by predicting both present keyphrases that appear in the source document and absent keyphrases that do not. However, relying solely on the source docu
Event detection (ED) task aims to classify events by identifying key event trigger words embedded in a piece of text. Previous research have proved the validity of fusing syntactic dependency relations into Graph Convolutional Networks(GCN). While ex