يمكن للمرء أن يجد العشرات من موارد البيانات لغات مختلفة بلغت coreference - وهي علاقة بين تعبيرين أو أكثر تشير إلى نفس كيان العالم الحقيقي - يتم تفاحيا يدويا.يمكن للمرء أن يفترض أيضا أن مثل هذه التعبيرات عادة ما تشكل وحدات ذات مغزى بلدية؛ومع ذلك، ذكر المشروح الذي تم تفجيحه ببساطة عن طريق تحديد فترات رمزية في معظم مشاريع كوراسة، أي بشكل مستقل عن أي تمثيل سنوي.نجادل بأنه قد يكون من المفيد جعل التعليقات التوضيحية النحوية والمباراة تقارب على المدى الطويل.نقدم دراسة تجريبية تجريبية تركز على التطابقات والخلط بين التدقيق الخطي المشروح باليد يمتد وألقي الأشجار النحوية تلقائيا التي تتبع اتفاقيات التبعيات العالمية.تغطي الدراسة 9 مجموعات بيانات لمدة 8 لغات مختلفة.
One can find dozens of data resources for various languages in which coreference - a relation between two or more expressions that refer to the same real-world entity - is manually annotated. One could also assume that such expressions usually constitute syntactically meaningful units; however, mention spans have been annotated simply by delimiting token intervals in most coreference projects, i.e., independently of any syntactic representation. We argue that it could be advantageous to make syntactic and coreference annotations convergent in the long term. We present a pilot empirical study focused on matches and mismatches between hand-annotated linear mention spans and automatically parsed syntactic trees that follow Universal Dependencies conventions. The study covers 9 datasets for 8 different languages.
References used
https://aclanthology.org/
In this paper, we present coreference resolution experiments with a newly created multilingual corpus CorefUD (Nedoluzhko et al.,2021). We focus on the following languages: Czech, Russian, Polish, German, Spanish, and Catalan. In addition to monoling
Contrastive Learning has emerged as a powerful representation learning method and facilitates various downstream tasks especially when supervised data is limited. How to construct efficient contrastive samples through data augmentation is key to its
Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging
Crowdsourcing has been ubiquitously used for annotating enormous collections of data. However, the major obstacles to using crowd-sourced labels are noise and errors from non-expert annotations. In this work, two approaches dealing with the noise and
Appraisal theories explain how the cognitive evaluation of an event leads to a particular emotion. In contrast to theories of basic emotions or affect (valence/arousal), this theory has not received a lot of attention in natural language processing.