Do you want to publish a course? Click here

Neural Media Bias Detection Using Distant Supervision With BABE - Bias Annotations By Experts

كشف وسائل الإعلام العصبية باستخدام إشراف بعيد مع فاتنة - التعليقات التوضيحية من قبل الخبراء

211   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging, primarily due to the lack of a gold standard data set and high context dependencies. This paper presents BABE, a robust and diverse data set created by trained experts, for media bias research. We also analyze why expert labeling is essential within this domain. Our data set offers better annotation quality and higher inter-annotator agreement than existing work. It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level. Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically. Our best performing BERT-based model is pre-trained on a larger corpus consisting of distant labels. Fine-tuning and evaluating the model on our proposed supervised data set, we achieve a macro F1-score of 0.804, outperforming existing methods.



References used
https://aclanthology.org/
rate research

Read More

In this paper, we present coreference resolution experiments with a newly created multilingual corpus CorefUD (Nedoluzhko et al.,2021). We focus on the following languages: Czech, Russian, Polish, German, Spanish, and Catalan. In addition to monoling ual experiments, we combine the training data in multilingual experiments and train two joined models - for Slavic languages and for all the languages together. We rely on an end-to-end deep learning model that we slightly adapted for the CorefUD corpus. Our results show that we can profit from harmonized annotations, and using joined models helps significantly for the languages with smaller training data.
Contrastive Learning has emerged as a powerful representation learning method and facilitates various downstream tasks especially when supervised data is limited. How to construct efficient contrastive samples through data augmentation is key to its success. Unlike vision tasks, the data augmentation method for contrastive learning has not been investigated sufficiently in language tasks. In this paper, we propose a novel approach to construct contrastive samples for language tasks using text summarization. We use these samples for supervised contrastive learning to gain better text representations which greatly benefit text classification tasks with limited annotations. To further improve the method, we mix up samples from different classes and add an extra regularization, named Mixsum, in addition to the cross-entropy-loss. Experiments on real-world text classification datasets (Amazon-5, Yelp-5, AG News, and IMDb) demonstrate the effectiveness of the proposed contrastive learning framework with summarization-based data augmentation and Mixsum regularization.
With the recent surge in social applications relying on knowledge graphs, the need for techniques to ensure fairness in KG based methods is becoming increasingly evident. Previous works have demonstrated that KGs are prone to various social biases, a nd have proposed multiple methods for debiasing them. However, in such studies, the focus has been on debiasing techniques, while the relations to be debiased are specified manually by the user. As manual specification is itself susceptible to human cognitive bias, there is a need for a system capable of quantifying and exposing biases, that can support more informed decisions on what to debias. To address this gap in the literature, we describe a framework for identifying biases present in knowledge graph embeddings, based on numerical bias metrics. We illustrate the framework with three different bias measures on the task of profession prediction, and it can be flexibly extended to further bias definitions and applications. The relations flagged as biased can then be handed to decision makers for judgement upon subsequent debiasing.
Social media texts such as blog posts, comments, and tweets often contain offensive languages including racial hate speech comments, personal attacks, and sexual harassment. Detecting inappropriate use of language is, therefore, of utmost importance for the safety of the users as well as for suppressing hateful conduct and aggression. Existing approaches to this problem are mostly available for resource-rich languages such as English and German. In this paper, we characterize the offensive language in Nepali, a low-resource language, highlighting the challenges that need to be addressed for processing Nepali social media text. We also present experiments for detecting offensive language using supervised machine learning. Besides contributing the first baseline approaches of detecting offensive language in Nepali, we also release human annotated data sets to encourage future research on this crucial topic.
We present new results for the problem of sequence metaphor labeling, using the recently developed Visibility Embeddings. We show that concatenating such embeddings to the input of a BiLSTM obtains consistent and significant improvements at almost no cost, and we present further improved results when visibility embeddings are combined with BERT.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا