Do you want to publish a course? Click here

Constructing Emotional Consensus and Utilizing Unpaired Data for Empathetic Dialogue Generation

بناء إجماع عاطفي واستخدام البيانات غير المستهلكة لتوليد الحوار المتعاطفة

188   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Researches on dialogue empathy aim to endow an agent with the capacity of accurate understanding and proper responding for emotions. Existing models for empathetic dialogue generation focus on the emotion flow in one direction, that is, from the context to response. We argue that conducting an empathetic conversation is a bidirectional process, where empathy occurs when the emotions of two interlocutors could converge on the same point, i.e., reaching an emotional consensus. Besides, we also find that the empathetic dialogue corpus is extremely limited, which further restricts the model performance. To address the above issues, we propose a dual-generative model, Dual-Emp, to simultaneously construct the emotional consensus and utilize some external unpaired data. Specifically, our model integrates a forward dialogue model, a backward dialogue model, and a discrete latent variable representing the emotional consensus into a unified architecture. Then, to alleviate the constraint of paired data, we extract unpaired emotional data from open-domain conversations and employ Dual-Emp to produce pseudo paired empathetic samples, which is more efficient and low-cost than the human annotation. Automatic and human evaluations demonstrate that our method outperforms competitive baselines in producing coherent and empathetic responses.

References used
https://aclanthology.org/

rate research

Read More

In open-domain dialogue response generation, a dialogue context can be continued with diverse responses, and the dialogue models should capture such one-to-many relations. In this work, we first analyze the training objective of dialogue models from the view of Kullback-Leibler divergence (KLD) and show that the gap between the real world probability distribution and the single-referenced data's probability distribution prevents the model from learning the one-to-many relations efficiently. Then we explore approaches to multi-referenced training in two aspects. Data-wise, we generate diverse pseudo references from a powerful pretrained model to build multi-referenced data that provides a better approximation of the real-world distribution. Model-wise, we propose to equip variational models with an expressive prior, named linear Gaussian model (LGM). Experimental results of automated evaluation and human evaluation show that the methods yield significant improvements over baselines.
Although exposure bias has been widely studied in some NLP tasks, it faces its unique challenges in dialogue response generation, the representative one-to-various generation scenario.In real human dialogue, there are many appropriate responses for t he same context, not only with different expressions, but also with different topics. Therefore, due to the much bigger gap between various ground-truth responses and the generated synthetic response, exposure bias is more challenging in dialogue generation task.What's more, as MLE encourages the model to only learn the common words among different ground-truth responses, but ignores the interesting and specific parts, exposure bias may further lead to the common response generation problem, such as I don't know'' and HaHa?'' In this paper, we propose a novel adaptive switching mechanism, which learns to automatically transit between ground-truth learning and generated learning regarding the word-level matching score, such as the cosine similarity. Experimental results on both Chinese STC dataset and English Reddit dataset, show that our adaptive method achieves a significant improvement in terms of metric-based evaluation and human evaluation, as compared with the state-of-the-art exposure bias approaches. Further analysis on NMT task also shows that our model can achieve a significant improvement.
Curriculum learning, a machine training strategy that feeds training instances to the model from easy to hard, has been proven to facilitate the dialogue generation task. Meanwhile, knowledge distillation, a knowledge transformation methodology among teachers and students networks can yield significant performance boost for student models. Hence, in this paper, we introduce a combination of curriculum learning and knowledge distillation for efficient dialogue generation models, where curriculum learning can help knowledge distillation from data and model aspects. To start with, from the data aspect, we cluster the training cases according to their complexity, which is calculated by various types of features such as sentence length and coherence between dialog pairs. Furthermore, we employ an adversarial training strategy to identify the complexity of cases from model level. The intuition is that, if a discriminator can tell the generated response is from the teacher or the student, then the case is difficult that the student model has not adapted to yet. Finally, we use self-paced learning, which is an extension to curriculum learning to assign weights for distillation. In conclusion, we arrange a hierarchical curriculum based on the above two aspects for the student model under the guidance from the teacher model. Experimental results demonstrate that our methods achieve improvements compared with competitive baselines.
Understanding speaker's feelings and producing appropriate responses with emotion connection is a key communicative skill for empathetic dialogue systems. In this paper, we propose a simple technique called Affective Decoding for empathetic response generation. Our method can effectively incorporate emotion signals during each decoding step, and can additionally be augmented with an auxiliary dual emotion encoder, which learns separate embeddings for the speaker and listener given the emotion base of the dialogue. Extensive empirical studies show that our models are perceived to be more empathetic by human evaluations, in comparison to several strong mainstream methods for empathetic responding.
Due to efficient end-to-end training and fluency in generated texts, several encoder-decoder framework-based models are recently proposed for data-to-text generations. Appropriate encoding of input data is a crucial part of such encoder-decoder model s. However, only a few research works have concentrated on proper encoding methods. This paper presents a novel encoder-decoder based data-to-text generation model where the proposed encoder carefully encodes input data according to underlying structure of the data. The effectiveness of the proposed encoder is evaluated both extrinsically and intrinsically by shuffling input data without changing meaning of that data. For selecting appropriate content information in encoded data from encoder, the proposed model incorporates attention gates in the decoder. With extensive experiments on WikiBio and E2E dataset, we show that our model outperforms the state-of-the models and several standard baseline systems. Analysis of the model through component ablation tests and human evaluation endorse the proposed model as a well-grounded system.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا