Do you want to publish a course? Click here

Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus

أحكام مقبولية أحادية وطني ومقابلة مع كولا إيطالية كولبا

220   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The development of automated approaches to linguistic acceptability has been greatly fostered by the availability of the English CoLA corpus, which has also been included in the widely used GLUE benchmark. However, this kind of research for languages other than English, as well as the analysis of cross-lingual approaches, has been hindered by the lack of resources with a comparable size in other languages. We have therefore developed the ItaCoLA corpus, containing almost 10,000 sentences with acceptability judgments, which has been created following the same approach and the same steps as the English one. In this paper we describe the corpus creation, we detail its content, and we present the first experiments on this new resource. We compare in-domain and out-of-domain classification, and perform a specific evaluation of nine linguistic phenomena. We also present the first cross-lingual experiments, aimed at assessing whether multilingual transformer-based approaches can benefit from using sentences in two languages during fine-tuning.



References used
https://aclanthology.org/
rate research

Read More

Cross-lingual summarization is a challenging task for which there are no cross-lingual scientific resources currently available. To overcome the lack of a high-quality resource, we present a new dataset for monolingual and cross-lingual summarization considering the English-German pair. We collect high-quality, real-world cross-lingual data from Spektrum der Wissenschaft, which publishes human-written German scientific summaries of English science articles on various subjects. The generated Spektrum dataset is small; therefore, we harvest a similar dataset from the Wikipedia Science Portal to complement it. The Wikipedia dataset consists of English and German articles, which can be used for monolingual and cross-lingual summarization. Furthermore, we present a quantitative analysis of the datasets and results of empirical experiments with several existing extractive and abstractive summarization models. The results suggest the viability and usefulness of the proposed dataset for monolingual and cross-lingual summarization.
Identification of lexical borrowings, transfer of words between languages, is an essential practice of historical linguistics and a vital tool in analysis of language contact and cultural events in general. We seek to improve tools for automatic dete ction of lexical borrowings, focusing here on detecting borrowed words from monolingual wordlists. Starting with a recurrent neural lexical language model and competing entropies approach, we incorporate a more current Transformer based lexical model. From there we experiment with several different models and approaches including a lexical donor model with augmented wordlist. The Transformer model reduces execution time and minimally improves borrowing detection. The augmented donor model shows some promise. A substantive change in approach or model is needed to make significant gains in identification of lexical borrowings.
Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is genera lly acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for low-resource languages. In this paper, we propose Ernie-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that Ernie-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks. The codes and pre-trained models will be made publicly available.
We propose a novel framework to train models to classify acceptability of responses generated by natural language generation (NLG) models, improving upon existing sentence transformation and model-based approaches. An NLG response is considered accep table if it is both semantically correct and grammatical. We don't make use of any human references making the classifiers suitable for runtime deployment. Training data for the classifiers is obtained using a 2-stage approach of first generating synthetic data using a combination of existing and new model-based approaches followed by a novel validation framework to filter and sort the synthetic data into acceptable and unacceptable classes. Our 2-stage approach adapts to a wide range of data representations and does not require additional data beyond what the NLG models are trained on. It is also independent of the underlying NLG model architecture, and is able to generate more realistic samples close to the distribution of the NLG model-generated responses. We present results on 5 datasets (WebNLG, Cleaned E2E, ViGGO, Alarm, and Weather) with varying data representations. We compare our framework with existing techniques that involve synthetic data generation using simple sentence transformations and/or model-based techniques, and show that building acceptability classifiers using data that resembles the generation model outputs followed by a validation framework outperforms the existing techniques, achieving state-of-the-art results. We also show that our techniques can be used in few-shot settings using self-training.
Multilingual language models exhibit better performance for some languages than for others (Singh et al., 2019), and many languages do not seem to benefit from multilingual sharing at all, presumably as a result of poor multilingual segmentation (Pyy sal o et al., 2020). This work explores the idea of learning multilingual language models based on clustering of monolingual segments. We show significant improvements over standard multilingual segmentation and training across nine languages on a question answering task, both in a small model regime and for a model of the size of BERT-base.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا