وقد حافظت العلامات الدلالية المتعددة اللغات واللغات الدلالية (SRL) مؤخرا عن الاهتمام المتزايد لأن تقنيات تمثيل النص متعدد اللغات أصبحت أكثر فعالية ومتاحة على نطاق واسع. في حين أن العمل الحديث قد حقق النجاح المتزايد، فإن النتائج على معايير الذهب متعددة اللغات لا تزال غير قابلة للمقارنة بسهولة عبر اللغات، مما يجعل من الصعب فهم حيث نقف. على سبيل المثال، في Conll-2009، تتأثر المقارنات القياسية لمعيار SRL متعدد اللغات، وهي مقارنات لغة إلى لغوية بحقيقة أن كل لغة لها مجموعة بيانات خاصة بها والتي تختلف عن الآخرين في الحجم والمجالات ومجموعات من التسميات والإرشادات التوضيحية. في هذه الورقة، نتعلم هذه المشكلة واقترح United-SRL، معيار جديد لعطلة SRL متعددة اللغات والتبادلة والاعتماد على التبعية. يوفر United-SRL شرحا متوازيا من الخبراء باستخدام مخزون هيكل الوسائد المشترك، مما يسمح بالمقارنات المباشرة عبر اللغات والدراسات المشجعة على النقل عبر اللغات في SRL. نقوم بإصدار United-SRL V1.0 في https://github.com/sapienzanlp/united-srl.
Multilingual and cross-lingual Semantic Role Labeling (SRL) have recently garnered increasing attention as multilingual text representation techniques have become more effective and widely available. While recent work has attained growing success, results on gold multilingual benchmarks are still not easily comparable across languages, making it difficult to grasp where we stand. For example, in CoNLL-2009, the standard benchmark for multilingual SRL, language-to-language comparisons are affected by the fact that each language has its own dataset which differs from the others in size, domains, sets of labels and annotation guidelines. In this paper, we address this issue and propose UniteD-SRL, a new benchmark for multilingual and cross-lingual, span- and dependency-based SRL. UniteD-SRL provides expert-curated parallel annotations using a common predicate-argument structure inventory, allowing direct comparisons across languages and encouraging studies on cross-lingual transfer in SRL. We release UniteD-SRL v1.0 at https://github.com/SapienzaNLP/united-srl.
References used
https://aclanthology.org/
Identifying whether a word carries the same meaning or different meaning in two contexts is an important research area in natural language processing which plays a significant role in many applications such as question answering, document summarisati
We introduce MULTI-EURLEX, a new multilingual dataset for topic classification of legal documents. The dataset comprises 65k European Union (EU) laws, officially translated in 23 languages, annotated with multiple labels from the EUROVOC taxonomy. We
In this paper, we present the first multilingual FAQ dataset publicly available. We collected around 6M FAQ pairs from the web, in 21 different languages. Although this is significantly larger than existing FAQ retrieval datasets, it comes with its o
This paper presents StoryDB --- a broad multi-language dataset of narratives. StoryDB is a corpus of texts that includes stories in 42 different languages. Every language includes 500+ stories. Some of the languages include more than 20 000 stories.
Although recent developments in neural architectures and pre-trained representations have greatly increased state-of-the-art model performance on fully-supervised semantic role labeling (SRL), the task remains challenging for languages where supervis