Do you want to publish a course? Click here

Segmenting Natural Language Sentences via Lexical Unit Analysis

تجزئة جمل اللغة الطبيعية عبر تحليل الوحدة المعجمية

335   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The span-based model enjoys great popularity in recent works of sequence segmentation. However, each of these methods suffers from its own defects, such as invalid predictions. In this work, we introduce a unified span-based model, lexical unit analysis (LUA), that addresses all these matters. Segmenting a lexical unit sequence involves two steps. Firstly, we embed every span by using the representations from a pretraining language model. Secondly, we define a score for every segmentation candidate and apply dynamic programming (DP) to extract the candidate with the maximum score. We have conducted extensive experiments on 3 tasks, (e.g., syntactic chunking), across 7 datasets. LUA has established new state-of-the-art performances on 6 of them. We have achieved even better results through incorporating label correlations.



References used
https://aclanthology.org/
rate research

Read More

The lack of description of a given program code acts as a big hurdle to those developers new to the code base for its understanding. To tackle this problem, previous work on code summarization, the task of automatically generating code description gi ven a piece of code reported that an auxiliary learning model trained to produce API (Application Programming Interface) embeddings showed promising results when applied to a downstream, code summarization model. However, different codes having different summaries can have the same set of API sequences. If we train a model to generate summaries given an API sequence, the model will not be able to learn effectively. Nevertheless, we note that the API sequence can still be useful and has not been actively utilized. This work proposes a novel multi-task approach that simultaneously trains two similar tasks: 1) summarizing a given code (code to summary), and 2) summarizing a given API sequence (API sequence to summary). We propose a novel code-level encoder based on BERT capable of expressing the semantics of code, and obtain representations for every line of code. Our work is the first code summarization work that utilizes a natural language-based contextual pre-trained language model in its encoder. We evaluate our approach using two common datasets (Java and Python) that have been widely used in previous studies. Our experimental results show that our multi-task approach improves over the baselines and achieves the new state-of-the-art.
Sentiment analysis has come a long way for high-resource languages due to the availability of large annotated corpora. However, it still suffers from lack of training data for low-resource languages. To tackle this problem, we propose Conditional Lan guage Adversarial Network (CLAN), an end-to-end neural architecture for cross-lingual sentiment analysis without cross-lingual supervision. CLAN differs from prior work in that it allows the adversarial training to be conditioned on both learned features and the sentiment prediction, to increase discriminativity for learned representation in the cross-lingual setting. Experimental results demonstrate that CLAN outperforms previous methods on the multilingual multi-domain Amazon review dataset. Our source code is released at https://github.com/hemanthkandula/clan.
We propose a new task, Text2Mol, to retrieve molecules using natural language descriptions as queries. Natural language and molecules encode information in very different ways, which leads to the exciting but challenging problem of integrating these two very different modalities. Although some work has been done on text-based retrieval and structure-based retrieval, this new task requires integrating molecules and natural language more directly. Moreover, this can be viewed as an especially challenging cross-lingual retrieval problem by considering the molecules as a language with a very unique grammar. We construct a paired dataset of molecules and their corresponding text descriptions, which we use to learn an aligned common semantic embedding space for retrieval. We extend this to create a cross-modal attention-based model for explainability and reranking by interpreting the attentions as association rules. We also employ an ensemble approach to integrate our different architectures, which significantly improves results from 0.372 to 0.499 MRR. This new multimodal approach opens a new perspective on solving problems in chemistry literature understanding and molecular machine learning.
Natural Language Processing (NLP) systems are at the heart of many critical automated decision-making systems making crucial recommendations about our future world. Gender bias in NLP has been well studied in English, but has been less studied in oth er languages. In this paper, a team including speakers of 9 languages - Chinese, Spanish, English, Arabic, German, French, Farsi, Urdu, and Wolof - reports and analyzes measurements of gender bias in the Wikipedia corpora for these 9 languages. We develop extensions to profession-level and corpus-level gender bias metric calculations originally designed for English and apply them to 8 other languages, including languages that have grammatically gendered nouns including different feminine, masculine, and neuter profession words. We discuss future work that would benefit immensely from a computational linguistics perspective.
Kiezdeutsch is a variety of German predominantly spoken by teenagers from multi-ethnic urban neighborhoods in casual conversations with their peers. In recent years, the popularity of Kiezdeutsch has increased among young people, independently of the ir socio-economic origin, and has spread in social media, too. While previous studies have extensively investigated this language variety from a linguistic and qualitative perspective, not much has been done from a quantitative point of view. We perform the first large-scale data-driven analysis of the lexical and morpho-syntactic properties of Kiezdeutsch in comparison with standard German. At the level of results, we confirm predictions of previous qualitative analyses and integrate them with further observations on specific linguistic phenomena such as slang and self-centered speaker attitude. At the methodological level, we provide logistic regression as a framework to perform bottom-up feature selection in order to quantify differences across language varieties.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا