Do you want to publish a course? Click here

Improving Cross-Lingual Sentiment Analysis via Conditional Language Adversarial Nets

تحسين تحليل المعنويات عبر اللغات عبر شبكات لغة شرطية

335   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Sentiment analysis has come a long way for high-resource languages due to the availability of large annotated corpora. However, it still suffers from lack of training data for low-resource languages. To tackle this problem, we propose Conditional Language Adversarial Network (CLAN), an end-to-end neural architecture for cross-lingual sentiment analysis without cross-lingual supervision. CLAN differs from prior work in that it allows the adversarial training to be conditioned on both learned features and the sentiment prediction, to increase discriminativity for learned representation in the cross-lingual setting. Experimental results demonstrate that CLAN outperforms previous methods on the multilingual multi-domain Amazon review dataset. Our source code is released at https://github.com/hemanthkandula/clan.



References used
https://aclanthology.org/
rate research

Read More

Pre-trained multilingual language encoders, such as multilingual BERT and XLM-R, show great potential for zero-shot cross-lingual transfer. However, these multilingual encoders do not precisely align words and phrases across languages. Especially, le arning alignments in the multilingual embedding space usually requires sentence-level or word-level parallel corpora, which are expensive to be obtained for low-resource languages. An alternative is to make the multilingual encoders more robust; when fine-tuning the encoder using downstream task, we train the encoder to tolerate noise in the contextual embedding spaces such that even if the representations of different languages are not aligned well, the model can still achieve good performance on zero-shot cross-lingual transfer. In this work, we propose a learning strategy for training robust models by drawing connections between adversarial examples and the failure cases of zero-shot cross-lingual transfer. We adopt two widely used robust training methods, adversarial training and randomized smoothing, to train the desired robust model. The experimental results demonstrate that robust training improves zero-shot cross-lingual transfer on text classification tasks. The improvement is more significant in the generalized cross-lingual transfer setting, where the pair of input sentences belong to two different languages.
Vision language navigation is the task that requires an agent to navigate through a 3D environment based on natural language instructions. One key challenge in this task is to ground instructions with the current visual information that the agent per ceives. Most of the existing work employs soft attention over individual words to locate the instruction required for the next action. However, different words have different functions in a sentence (e.g., modifiers convey attributes, verbs convey actions). Syntax information like dependencies and phrase structures can aid the agent to locate important parts of the instruction. Hence, in this paper, we propose a navigation agent that utilizes syntax information derived from a dependency tree to enhance alignment between the instruction and the current visual scenes. Empirically, our agent outperforms the baseline model that does not use syntax information on the Room-to-Room dataset, especially in the unseen environment. Besides, our agent achieves the new state-of-the-art on Room-Across-Room dataset, which contains instructions in 3 languages (English, Hindi, and Telugu). We also show that our agent is better at aligning instructions with the current visual information via qualitative visualizations.
We study the problem of Cross-lingual Event Argument Extraction (CEAE). The task aims to predict argument roles of entity mentions for events in text, whose language is different from the language that a predictive model has been trained on. Previous work on CEAE has shown the cross-lingual benefits of universal dependency trees in capturing shared syntactic structures of sentences across languages. In particular, this work exploits the existence of the syntactic connections between the words in the dependency trees as the anchor knowledge to transfer the representation learning across languages for CEAE models (i.e., via graph convolutional neural networks -- GCNs). In this paper, we introduce two novel sources of language-independent information for CEAE models based on the semantic similarity and the universal dependency relations of the word pairs in different languages. We propose to use the two sources of information to produce shared sentence structures to bridge the gap between languages and improve the cross-lingual performance of the CEAE models. Extensive experiments are conducted with Arabic, Chinese, and English to demonstrate the effectiveness of the proposed method for CEAE.
We study Comparative Preference Classification (CPC) which aims at predicting whether a preference comparison exists between two entities in a given sentence and, if so, which entity is preferred over the other. High-quality CPC models can significan tly benefit applications such as comparative question answering and review-based recommendation. Among the existing approaches, non-deep learning methods suffer from inferior performances. The state-of-the-art graph neural network-based ED-GAT (Ma et al., 2020) only considers syntactic information while ignoring the critical semantic relations and the sentiments to the compared entities. We propose Sentiment Analysis Enhanced COmparative Network (SAECON) which improves CPC accuracy with a sentiment analyzer that learns sentiments to individual entities via domain adaptive knowledge transfer. Experiments on the CompSent-19 (Panchenko et al., 2019) dataset present a significant improvement on the F1 scores over the best existing CPC approaches.
Generative adversarial networks (GANs) have succeeded in inducing cross-lingual word embeddings - maps of matching words across languages - without supervision. Despite these successes, GANs' performance for the difficult case of distant languages is still not satisfactory. These limitations have been explained by GANs' incorrect assumption that source and target embedding spaces are related by a single linear mapping and are approximately isomorphic. We assume instead that, especially across distant languages, the mapping is only piece-wise linear, and propose a multi-adversarial learning method. This novel method induces the seed cross-lingual dictionary through multiple mappings, each induced to fit the mapping for one subspace. Our experiments on unsupervised bilingual lexicon induction and cross-lingual document classification show that this method improves performance over previous single-mapping methods, especially for distant languages.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا