Do you want to publish a course? Click here

ur-iw-hnt at GermEval 2021: An Ensembling Strategy with Multiple BERT Models

UR-IW-HNT في Germeval 2021: استراتيجية كفرية مع نماذج بيرت متعددة

285   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes our approach (ur-iw-hnt) for the Shared Task of GermEval2021 to identify toxic, engaging, and fact-claiming comments. We submitted three runs using an ensembling strategy by majority (hard) voting with multiple different BERT models of three different types: German-based, Twitter-based, and multilingual models. All ensemble models outperform single models, while BERTweet is the winner of all individual models in every subtask. Twitter-based models perform better than GermanBERT models, and multilingual models perform worse but by a small margin.



References used
https://aclanthology.org/
rate research

Read More

We describe our participation in all the subtasks of the Germeval 2021 shared task on the identification of Toxic, Engaging, and Fact-Claiming Comments. Our system is an ensemble of state-of-the-art pre-trained models finetuned with carefully enginee red features. We show that feature engineering and data augmentation can be helpful when the training data is sparse. We achieve an F1 score of 66.87, 68.93, and 73.91 in Toxic, Engaging, and Fact-Claiming comment identification subtasks.
In this paper, we report on our approach to addressing the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments for the German language. We submitted three runs for each subtask based on ensembles of three mo dels each using contextual embeddings from pre-trained language models using SVM and neural-network-based classifiers. We include language-specific as well as language-agnostic language models -- both with and without fine-tuning. We observe that for the runs we submitted that the SVM models overfitted the training data and this affected the aggregation method (simple majority voting) of the ensembles. The model records a lower performance on the test set than on the training set. Exploring the issue of overfitting we uncovered that due to a bug in the pipeline the runs we submitted had not been trained on the full set but only on a small training set. Therefore in this paper we also include the results we get when trained on the full training set which demonstrate the power of ensembles.
In this work, we present our approaches on the toxic comment classification task (subtask 1) of the GermEval 2021 Shared Task. For this binary task, we propose three models: a German BERT transformer model; a multilayer perceptron, which was first tr ained in parallel on textual input and 14 additional linguistic features and then concatenated in an additional layer; and a multilayer perceptron with both feature types as input. We enhanced our pre-trained transformer model by re-training it with over 1 million tweets and fine-tuned it on two additional German datasets of similar tasks. The embeddings of the final fine-tuned German BERT were taken as the textual input features for our neural networks. Our best models on the validation data were both neural networks, however our enhanced German BERT gained with a F1-score = 0.5895 a higher prediction on the test data.
The availability of language representations learned by large pretrained neural network models (such as BERT and ELECTRA) has led to improvements in many downstream Natural Language Processing tasks in recent years. Pretrained models usually differ i n pretraining objectives, architectures, and datasets they are trained on which can affect downstream performance. In this contribution, we fine-tuned German BERT and German ELECTRA models to identify toxic (subtask 1), engaging (subtask 2), and fact-claiming comments (subtask 3) in Facebook data provided by the GermEval 2021 competition. We created ensembles of these models and investigated whether and how classification performance depends on the number of ensemble members and their composition. On out-of-sample data, our best ensemble achieved a macro-F1 score of 0.73 (for all subtasks), and F1 scores of 0.72, 0.70, and 0.76 for subtasks 1, 2, and 3, respectively.
This paper addresses the identification of toxic, engaging, and fact-claiming comments on social media. We used the dataset made available by the organizers of the GermEval2021 shared task containing over 3,000 manually annotated Facebook comments in German. Considering the relatedness of the three tasks, we approached the problem using large pre-trained transformer models and multitask learning. Our results indicate that multitask learning achieves performance superior to the more common single task learning approach in all three tasks. We submit our best systems to GermEval-2021 under the team name WLV-RIT.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا