Do you want to publish a course? Click here

DeTox at GermEval 2021: Toxic Comment Classification

السموم في Germeval 2021: تصنيف سام التعليق

366   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this work, we present our approaches on the toxic comment classification task (subtask 1) of the GermEval 2021 Shared Task. For this binary task, we propose three models: a German BERT transformer model; a multilayer perceptron, which was first trained in parallel on textual input and 14 additional linguistic features and then concatenated in an additional layer; and a multilayer perceptron with both feature types as input. We enhanced our pre-trained transformer model by re-training it with over 1 million tweets and fine-tuned it on two additional German datasets of similar tasks. The embeddings of the final fine-tuned German BERT were taken as the textual input features for our neural networks. Our best models on the validation data were both neural networks, however our enhanced German BERT gained with a F1-score = 0.5895 a higher prediction on the test data.



References used
https://aclanthology.org/
rate research

Read More

We report on our submission to Task 1 of the GermEval 2021 challenge -- toxic comment classification. We investigate different ways of bolstering scarce training data to improve off-the-shelf model performance on a toxic comment classification task. To help address the limitations of a small dataset, we use data synthetically generated by a German GPT-2 model. The use of synthetic data has only recently been taking off as a possible solution to ad- dressing training data sparseness in NLP, and initial results are promising. However, our model did not see measurable improvement through the use of synthetic data. We discuss possible reasons for this finding and explore future works in the field.
In this paper we investigate the efficacy of using contextual embeddings from multilingual BERT and German BERT in identifying fact-claiming comments in German on social media. Additionally, we examine the impact of formulating the classification pro blem as a multi-task learning problem, where the model identifies toxicity and engagement of the comment in addition to identifying whether it is fact-claiming. We provide a thorough comparison of the two BERT based models compared with a logistic regression baseline and show that German BERT features trained using a multi-task objective achieves the best F1 score on the test set. This work was done as part of a submission to GermEval 2021 shared task on the identification of fact-claiming comments.
In this paper, we report on our approach to addressing the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments for the German language. We submitted three runs for each subtask based on ensembles of three mo dels each using contextual embeddings from pre-trained language models using SVM and neural-network-based classifiers. We include language-specific as well as language-agnostic language models -- both with and without fine-tuning. We observe that for the runs we submitted that the SVM models overfitted the training data and this affected the aggregation method (simple majority voting) of the ensembles. The model records a lower performance on the test set than on the training set. Exploring the issue of overfitting we uncovered that due to a bug in the pipeline the runs we submitted had not been trained on the full set but only on a small training set. Therefore in this paper we also include the results we get when trained on the full training set which demonstrate the power of ensembles.
The availability of language representations learned by large pretrained neural network models (such as BERT and ELECTRA) has led to improvements in many downstream Natural Language Processing tasks in recent years. Pretrained models usually differ i n pretraining objectives, architectures, and datasets they are trained on which can affect downstream performance. In this contribution, we fine-tuned German BERT and German ELECTRA models to identify toxic (subtask 1), engaging (subtask 2), and fact-claiming comments (subtask 3) in Facebook data provided by the GermEval 2021 competition. We created ensembles of these models and investigated whether and how classification performance depends on the number of ensemble members and their composition. On out-of-sample data, our best ensemble achieved a macro-F1 score of 0.73 (for all subtasks), and F1 scores of 0.72, 0.70, and 0.76 for subtasks 1, 2, and 3, respectively.
This paper addresses the identification of toxic, engaging, and fact-claiming comments on social media. We used the dataset made available by the organizers of the GermEval2021 shared task containing over 3,000 manually annotated Facebook comments in German. Considering the relatedness of the three tasks, we approached the problem using large pre-trained transformer models and multitask learning. Our results indicate that multitask learning achieves performance superior to the more common single task learning approach in all three tasks. We submit our best systems to GermEval-2021 under the team name WLV-RIT.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا