Do you want to publish a course? Click here

Toward the creation of WordNets for ancient Indo-European languages

نحو إنشاء Wallets لغات الهند القديمة الأوروبية

456   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents the work in progress toward the creation of a family of WordNets for Sanskrit, Ancient Greek, and Latin. Building on previous attempts in the field, we elaborate these efforts bridging together WordNet relational semantics with theories of meaning from Cognitive Linguistics. We discuss some of the innovations we have introduced to the WordNet architecture, to better capture the polysemy of words, as well as Indo-European language family-specific features. We conclude the paper framing our work within the larger picture of resources available for ancient languages and showing that WordNet-backed search tools have the potential to re-define the kinds of questions that can be asked of ancient language corpora.



References used
https://aclanthology.org/
rate research

Read More

This paper describes the participation of the BSC team in the WMT2021's Multilingual Low-Resource Translation for Indo-European Languages Shared Task. The system aims to solve the Subtask 2: Wikipedia cultural heritage articles, which involves transl ation in four Romance languages: Catalan, Italian, Occitan and Romanian. The submitted system is a multilingual semi-supervised machine translation model. It is based on a pre-trained language model, namely XLM-RoBERTa, that is later fine-tuned with parallel data obtained mostly from OPUS. Unlike other works, we only use XLM to initialize the encoder and randomly initialize a shallow decoder. The reported results are robust and perform well for all tested languages.
This paper describes Charles University sub-mission for Terminology translation shared task at WMT21. The objective of this task is to design a system which translates certain terms based on a provided terminology database, while preserving high over all translation quality. We competed in English-French language pair. Our approach is based on providing the desired translations alongside the input sentence and training the model to use these provided terms. We lemmatize the terms both during the training and inference, to allow the model to learn how to produce correct surface forms of the words, when they differ from the forms provided in the terminology database.
In this work, we investigate methods for the challenging task of translating between low- resource language pairs that exhibit some level of similarity. In particular, we consider the utility of transfer learning for translating between several Indo- European low-resource languages from the Germanic and Romance language families. In particular, we build two main classes of transfer-based systems to study how relatedness can benefit the translation performance. The primary system fine-tunes a model pre-trained on a related language pair and the contrastive system fine-tunes one pre-trained on an unrelated language pair. Our experiments show that although relatedness is not necessary for transfer learning to work, it does benefit model performance.
This paper describes TenTrans' submission to WMT21 Multilingual Low-Resource Translation shared task for the Romance language pairs. This task focuses on improving translation quality from Catalan to Occitan, Romanian and Italian, with the assistance of related high-resource languages. We mainly utilize back-translation, pivot-based methods, multilingual models, pre-trained model fine-tuning, and in-domain knowledge transfer to improve the translation quality. On the test set, our best-submitted system achieves an average of 43.45 case-sensitive BLEU scores across all low-resource pairs. Our data, code, and pre-trained models used in this work are available in TenTrans evaluation examples.
This paper proposes the implementation of WordNets for five South African languages, namely, Sepedi, Setswana, Tshivenda, isiZulu and isiXhosa to be added to open multilingual WordNets (OMW) on natural language toolkit (NLTK). The African WordNets ar e converted from Princeton WordNet (PWN) 2.0 to 3.0 to match the synsets in PWN 3.0. After conversion, there were 7157, 11972, 1288, 6380, and 9460 lemmas for Sepedi, Setswana, Tshivenda, isiZulu and isiX- hosa respectively. Setswana, isiXhosa, Sepedi contains more lemmas compared to 8 languages in OMW and isiZulu contains more lemmas compared to 7 languages in OMW. A library has been published for continuous development of African WordNets in OMW using NLTK.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا