تقدم الورقة شبكة الدلالية المشروع مع مجموعة واسعة من العلاقات الدلالية وإنجازاتها الرئيسية.الهدف النهائي للمشروع هو توسيع Princeton Wordnet مع الإطارات المفاهيمية التي تحدد العلاقات الجزيئية من عمليات التملائم الفعل والفئات الدلالية من الأسماء المرسلة للتجمع مع أفعال معينة.في هذه المرحلة من العمل: أ) تم تزويد أكثر من 5000 من عمليات تصعيد الفعل في WordNet مع إطارات FRAMENET الدلالية Framenet يدويا، ب) تم تعيين 253 نوعا دالايا يدويا إلى مفاهيم WordNet المناسبة التي توفر تمثيل مفصل للصفوف الدلالية من الأسماء الدلالية.
The paper presents the project Semantic Network with a Wide Range of Semantic Relations and its main achievements. The ultimate objective of the project is to expand Princeton WordNet with conceptual frames that define the syntagmatic relations of verb synsets and the semantic classes of nouns felicitous to combine with particular verbs. At this stage of the work: a) over 5,000 WordNet verb synsets have been supplied with manually evaluated FrameNet semantic frames, b) 253 semantic types have been manually mapped to the appropriate WordNet concepts providing detailed ontological representation of the semantic classes of nouns.
References used
https://aclanthology.org/
WordNet is the most widely used lexical resource for English, while Wikidata is one of the largest knowledge graphs of entity and concepts available. While, there is a clear difference in the focus of these two resources, there is also a significant
This paper describes the development of an online lexical resource to help detection systems regulate and curb the use of offensive words online. With the growing prevalence of social media platforms, many conversations are now conducted on- line. Th
Currently, there are two available wordnets for Turkish: TR-wordnet of BalkaNet and KeNet. As the more comprehensive wordnet for Turkish, KeNet includes 76,757 synsets. KeNet has both intralingual semantic relations and is linked to PWN through inter
The vast majority of the existing approaches for taxonomy enrichment apply word embeddings as they have proven to accumulate contexts (in a broad sense) extracted from texts which are sufficient for attaching orphan words to the taxonomy. On the othe
Neural language models, including transformer-based models, that are pre-trained on very large corpora became a common way to represent text in various tasks, including recognition of textual semantic relations, e.g. Cross-document Structure Theory.