Do you want to publish a course? Click here

DialogSum Challenge: Summarizing Real-Life Scenario Dialogues

تحدي مباشر: تلخيص حوارات سيناريو الحياة الحقيقية

260   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We propose a shared task on summarizing real-life scenario dialogues, DialogSum Challenge, to encourage researchers to address challenges in dialogue summarization, which has been less studied by the summarization community. Real-life scenario dialogue summarization has a wide potential application prospect in chat-bot and personal assistant. It contains unique challenges such as special discourse structure, coreference, pragmatics, and social common sense, which require specific representation learning technologies to deal with. We carefully annotate a large-scale dialogue summarization dataset based on multiple public dialogue corpus, opening the door to all kinds of summarization models.



References used
https://aclanthology.org/
rate research

Read More

We propose MultiDoc2Dial, a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. Most previous works treat document-grounded dialogue modeling as machine reading comprehension task based on a single given document or passage. In this work, we aim to address more realistic scenarios where a goal-oriented information-seeking conversation involves multiple topics, and hence is grounded on different documents. To facilitate such task, we introduce a new dataset that contains dialogues grounded in multiple documents from four different domains. We also explore modeling the dialogue-based and document-based contexts in the dataset. We present strong baseline approaches and various experimental results, aiming to support further research efforts on such a task.
Open-domain question answering has exploded in popularity recently due to the success of dense retrieval models, which have surpassed sparse models using only a few supervised training examples. However, in this paper, we demonstrate current dense mo dels are not yet the holy grail of retrieval. We first construct EntityQuestions, a set of simple, entity-rich questions based on facts from Wikidata (e.g., Where was Arve Furset born?''), and observe that dense retrievers drastically under-perform sparse methods. We investigate this issue and uncover that dense retrievers can only generalize to common entities unless the question pattern is explicitly observed during training. We discuss two simple solutions towards addressing this critical problem. First, we demonstrate that data augmentation is unable to fix the generalization problem. Second, we argue a more robust passage encoder helps facilitate better question adaptation using specialized question encoders. We hope our work can shed light on the challenges in creating a robust, universal dense retriever that works well across different input distributions.
Smooth and effective communication requires the ability to perform latent or explicit commonsense inference. Prior commonsense reasoning benchmarks (such as SocialIQA and CommonsenseQA) mainly focus on the discriminative task of choosing the right an swer from a set of candidates, and do not involve interactive language generation as in dialogue. Moreover, existing dialogue datasets do not explicitly focus on exhibiting commonsense as a facet. In this paper, we present an empirical study of commonsense in dialogue response generation. We first auto-extract commonsensical dialogues from existing dialogue datasets by leveraging ConceptNet, a commonsense knowledge graph. Furthermore, building on social contexts/situations in SocialIQA, we collect a new dialogue dataset with 25K dialogues aimed at exhibiting social commonsense in an interactive setting. We evaluate response generation models trained using these datasets and find that models trained on both extracted and our collected data produce responses that consistently exhibit more commonsense than baselines. Finally we propose an approach for automatic evaluation of commonsense that relies on features derived from ConceptNet and pre-trained language and dialog models, and show reasonable correlation with human evaluation of responses' commonsense quality.
Snobar River is the basic water resource system in Snobar watershed (268.8 km2), which empties into the Mediterranean sea 10 kilometers south of Lattakia. We must find out advanced management to face of the recent serious conflicts such as climate ch anges. Modeling is adopted as appropriate tool to achieve this object. This study uses the software package WEAP21 (Water Evaluation and Planning System), which is specifically designed to evaluate and plan the water resources. We suggest two scenarios to carry out the weaping Snob arriver basin: the first includes new irrigation techniques, the second includes extended dry climate. The study has shown that demand site coverage reaches to 100%, but the river dries in the downstream of Athwart reservoir. We economize on water by suggestion a dripping irrigation technique (59%). Water year method and extended dry climate scenario declare the likely dangerous effects of climate changes.
Automated systems that negotiate with humans have broad applications in pedagogy and conversational AI. To advance the development of practical negotiation systems, we present CaSiNo: a novel corpus of over a thousand negotiation dialogues in English . Participants take the role of campsite neighbors and negotiate for food, water, and firewood packages for their upcoming trip. Our design results in diverse and linguistically rich negotiations while maintaining a tractable, closed-domain environment. Inspired by the literature in human-human negotiations, we annotate persuasion strategies and perform correlation analysis to understand how the dialogue behaviors are associated with the negotiation performance. We further propose and evaluate a multi-task framework to recognize these strategies in a given utterance. We find that multi-task learning substantially improves the performance for all strategy labels, especially for the ones that are the most skewed. We release the dataset, annotations, and the code to propel future work in human-machine negotiations: https://github.com/kushalchawla/CaSiNo

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا