يوفر مورد Slokining تعيينات بين مجموعة متنوعة من العناصر الدلالية المعجمية، كل منها بنقاط القوة والضعف.للاستفادة من هذه الاختلافات، فإن القدرة على التحرك بين الموارد أمر ضروري.يصف هذا العمل التقدم المحرز لتحسين قابلية استخدام مورد SemLink: الإضافة التلقائية للحالات والتعيينات الجديدة والتصحيحات اليدوية والمتجهات اليدوية ومعلومات الرواد، والهندسة المعمارية التي تم بناؤها تلقائيا تحديث المورد عند إصدارات تغيير الموارد الأساسية.تعمل هذه التحديثات على تحسين التغطية، وتوفر أدوات جديدة للاستفادة من قدرات هذه الموارد، وتسهيل تحديثات سلسة، وضمان الاتساق وتطبيق هذه التعيينات في المستقبل.
The SemLink resource provides mappings between a variety of lexical semantic ontologies, each with their strengths and weaknesses. To take advantage of these differences, the ability to move between resources is essential. This work describes advances made to improve the usability of the SemLink resource: the automatic addition of new instances and mappings, manual corrections, sense-based vectors and collocation information, and architecture built to automatically update the resource when versions of the underlying resources change. These updates improve coverage, provide new tools to leverage the capabilities of these resources, and facilitate seamless updates, ensuring the consistency and applicability of these mappings in the future.
References used
https://aclanthology.org/
This paper describes ongoing work aiming at adding pronunciation information to lexical semantic resources, with a focus on open wordnets. Our goal is not only to add a new modality to those semantic networks, but also to mark heteronyms listed in th
In this paper, we provide a bilingual parallel human-to-human recommendation dialog dataset (DuRecDial 2.0) to enable researchers to explore a challenging task of multilingual and cross-lingual conversational recommendation. The difference between Du
Understanding when a text snippet does not provide a sought after information is an essential part of natural language utnderstanding. Recent work (SQuAD 2.0; Rajpurkar et al., 2018) has attempted to make some progress in this direction by enriching
In recent years, a number of studies have used linear models for personality prediction based on text. In this paper, we empirically analyze and compare the lexical signals captured in such models. We identify lexical cues for each dimension of the M
In this paper we describe our participation in the Lexical Complexity Prediction (LCP) shared task of SemEval 2021, which involved predicting subjective ratings of complexity for English single words and multi-word expressions, presented in context.