Do you want to publish a course? Click here

Large-scale text pre-training helps with dialogue act recognition, but not without fine-tuning

تساعد النص المسبق على نطاق واسع في التعرف على قانون الحوار، ولكن ليس بدون ضبط جيد

189   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We use dialogue act recognition (DAR) to investigate how well BERT represents utterances in dialogue, and how fine-tuning and large-scale pre-training contribute to its performance. We find that while both the standard BERT pre-training and pretraining on dialogue-like data are useful, task-specific fine-tuning is essential for good performance.

References used
https://aclanthology.org/
rate research

Read More

This study proposes an utterance position-aware approach for a neural network-based dialogue act recognition (DAR) model, which incorporates positional encoding for utterance's absolute or relative position. The proposed approach is inspired by the o bservation that some dialogue acts have tendencies of occurrence positions. The evaluations on the Switchboard corpus show that the proposed positional encoding of utterances statistically significantly improves the performance of DAR.
Contextual advertising provides advertisers with the opportunity to target the context which is most relevant to their ads. The large variety of potential topics makes it very challenging to collect training documents to build a supervised classifica tion model or compose expert-written rules in a rule-based classification system. Besides, in fine-grained classification, different categories often overlap or co-occur, making it harder to classify accurately. In this work, we propose wiki2cat, a method to tackle large-scaled fine-grained text classification by tapping on the Wikipedia category graph. The categories in the IAB taxonomy are first mapped to category nodes in the graph. Then the label is propagated across the graph to obtain a list of labeled Wikipedia documents to induce text classifiers. The method is ideal for large-scale classification problems since it does not require any manually-labeled document or hand-curated rules or keywords. The proposed method is benchmarked with various learning-based and keyword-based baselines and yields competitive performance on publicly available datasets and a new dataset containing more than 300 fine-grained categories.
Fine-grained classification involves dealing with datasets with larger number of classes with subtle differences between them. Guiding the model to focus on differentiating dimensions between these commonly confusable classes is key to improving perf ormance on fine-grained tasks. In this work, we analyse the contrastive fine-tuning of pre-trained language models on two fine-grained text classification tasks, emotion classification and sentiment analysis. We adaptively embed class relationships into a contrastive objective function to help differently weigh the positives and negatives, and in particular, weighting closely confusable negatives more than less similar negative examples. We find that Label-aware Contrastive Loss outperforms previous contrastive methods, in the presence of larger number and/or more confusable classes, and helps models to produce output distributions that are more differentiated.
Large-Scale Multi-Label Text Classification (LMTC) includes tasks with hierarchical label spaces, such as automatic assignment of ICD-9 codes to discharge summaries. Performance of models in prior art is evaluated with standard precision, recall, and F1 measures without regard for the rich hierarchical structure. In this work we argue for hierarchical evaluation of the predictions of neural LMTC models. With the example of the ICD-9 ontology we describe a structural issue in the representation of the structured label space in prior art, and propose an alternative representation based on the depth of the ontology. We propose a set of metrics for hierarchical evaluation using the depth-based representation. We compare the evaluation scores from the proposed metrics with previously used metrics on prior art LMTC models for ICD-9 coding in MIMIC-III. We also propose further avenues of research involving the proposed ontological representation.
We present the ongoing NorLM initiative to support the creation and use of very large contextualised language models for Norwegian (and in principle other Nordic languages), including a ready-to-use software environment, as well as an experience repo rt for data preparation and training. This paper introduces the first large-scale monolingual language models for Norwegian, based on both the ELMo and BERT frameworks. In addition to detailing the training process, we present contrastive benchmark results on a suite of NLP tasks for Norwegian. For additional background and access to the data, models, and software, please see: http://norlm.nlpl.eu

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا