تحليل التبعية هي أداة تستخدم على نطاق واسع في مجال معالجة اللغة الطبيعية واللغويات الحاسوبية.ومع ذلك، فهناك أي عمل لا يربط بتحليل التبعية إلى رتابة، وهو جزء أساسي من المنطق واللغوي.في هذه الورقة، نقدم نظام يعلق تلقائيا على معلومات رتابة تستند إلى أشجار تحليل التبعية الشاملة.يستخدم نظامنا حقائق عاطفية على مستوى سطح الأرض حول الكميات والبنود المعجمية ومعلومات القطبية على مستوى الرمز المميز.قمنا بمقارنة أداء نظامنا مع الأنظمة الحالية في الأدبيات، بما في ذلك NATLOG و CCG2MONO، على مجموعة بيانات تقييم صغيرة.تظهر النتائج أن نظامنا يتفوق على Natlog و CCG2MONO.
Dependency parsing is a tool widely used in the field of Natural language processing and computational linguistics. However, there is hardly any work that connects dependency parsing to monotonicity, which is an essential part of logic and linguistic semantics. In this paper, we present a system that automatically annotates monotonicity information based on Universal Dependency parse trees. Our system utilizes surface-level monotonicity facts about quantifiers, lexical items, and token-level polarity information. We compared our system's performance with existing systems in the literature, including NatLog and ccg2mono, on a small evaluation dataset. Results show that our system outperforms NatLog and ccg2mono.
References used
https://aclanthology.org/
Recent work on aspect-level sentiment classification has demonstrated the efficacy of incorporating syntactic structures such as dependency trees with graph neural networks (GNN), but these approaches are usually vulnerable to parsing errors. To bett
We describe the second IWPT task on end-to-end parsing from raw text to Enhanced Universal Dependencies. We provide details about the evaluation metrics and the datasets used for training and evaluation. We compare the approaches taken by participating teams and discuss the results of the shared task, also in comparison with the first edition of this task.
Abstract Meaning Representation (AMR) is a sentence-level meaning representation based on predicate argument structure. One of the challenges we find in AMR parsing is to capture the structure of complex sentences which expresses the relation between
This paper describes a system proposed for the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies (EUD). We propose a Graph Rewriting based system for computing Enhanced Universal Dependencies, given the Basic Universal Dependencies (UD).
Machine translation usually relies on parallel corpora to provide parallel signals for training. The advent of unsupervised machine translation has brought machine translation away from this reliance, though performance still lags behind traditional