نحن تصف مهمة IWPT الثانية على تحليل نهاية إلى نهاية من النص الخام لتعزيز التبعيات العالمية.نحن نقدم تفاصيل حول مقاييس التقييم ومجموعات البيانات المستخدمة للتدريب والتقييم.قارنا النهج التي اتخذتها الفرق المشاركة ومناقشة نتائج المهمة المشتركة، والمقارنة أيضا مع الطبعة الأولى من هذه المهمة.
We describe the second IWPT task on end-to-end parsing from raw text to Enhanced Universal Dependencies. We provide details about the evaluation metrics and the datasets used for training and evaluation. We compare the approaches taken by participating teams and discuss the results of the shared task, also in comparison with the first edition of this task.
References used
https://aclanthology.org/
This paper presents our multilingual dependency parsing system as used in the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies. Our system consists of an unfactorized biaffine classifier that operates directly on fine-tuned XLM-R
We describe the DCU-EPFL submission to the IWPT 2021 Parsing Shared Task: From Raw Text to Enhanced Universal Dependencies. The task involves parsing Enhanced UD graphs, which are an extension of the basic dependency trees designed to be more facilit
This paper describes a system proposed for the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies (EUD). We propose a Graph Rewriting based system for computing Enhanced Universal Dependencies, given the Basic Universal Dependencies (UD).
In this shared task, this paper proposes a method to combine the BERT-based word vector model and the LSTM prediction model to predict the Valence and Arousal values in the text. Among them, the BERT-based word vector is 768-dimensional, and each wor
This paper presents the ROCLING 2021 shared task on dimensional sentiment analysis for educational texts which seeks to identify a real-value sentiment score of self-evaluation comments written by Chinese students in the both valence and arousal dime