اقترحت الدراسات النفسية تتبع العين أن التماسك الدلالي في السياق والتنبؤية تؤثر على معالجة اللغة خلال نشاط القراءة.في هذه الدراسة، يمكننا التحقيق في الارتباط بين أوجه التشابه الجيبيني المحسوب مع نماذج تضمين كلمة (كلا من البيانات الثابتة والسياقية) وبيانات تتبع العين من اثنين من القراءة الطبيعية.درسنا أيضا ارتباطات الدرجات المفاجئة المحسوبة بثلاث نماذج لغة حديثة.تظهر نتائجنا ارتباطا قويا للدرجات المحسوبة مع بيرت والقفازات، مما يشير إلى أن التشابه يمكن أن تلعب دورا مهما في أوقات القراءة النمذجة.
Eye-tracking psycholinguistic studies have suggested that context-word semantic coherence and predictability influence language processing during the reading activity. In this study, we investigate the correlation between the cosine similarities computed with word embedding models (both static and contextualized) and eye-tracking data from two naturalistic reading corpora. We also studied the correlations of surprisal scores computed with three state-of-the-art language models. Our results show strong correlation for the scores computed with BERT and GloVe, suggesting that similarity can play an important role in modeling reading times.
References used
https://aclanthology.org/
Semantic textual similarity (STS) systems estimate the degree of the meaning similarity between two sentences. Cross-lingual STS systems estimate the degree of the meaning similarity between two sentences, each in a different language. State-of-the-a
ROUGE is a widely used evaluation metric in text summarization. However, it is not suitable for the evaluation of abstractive summarization systems as it relies on lexical overlap between the gold standard and the generated summaries. This limitation
Slow emerging topic detection is a task between event detection, where we aggregate behaviors of different words on short period of time, and language evolution, where we monitor their long term evolution. In this work, we tackle the problem of early
Semantic divergence in related languages is a key concern of historical linguistics. We cross-linguistically investigate the semantic divergence of cognate pairs in English and Romance languages, by means of word embeddings. To this end, we introduce
Sarcasm detection is important for several NLP tasks such as sentiment identification in product reviews, user feedback, and online forums. It is a challenging task requiring a deep understanding of language, context, and world knowledge. In this pap