Do you want to publish a course? Click here

Proof Net Structure for Neural Lambek Categorial Parsing

دليل صافي إثبات التحليل الصلب ل Lambek العصبي

252   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we present the first statistical parser for Lambek categorial grammar (LCG), a grammatical formalism for which the graphical proof method known as *proof nets* is applicable. Our parser incorporates proof net structure and constraints into a system based on self-attention networks via novel model elements. Our experiments on an English LCG corpus show that incorporating term graph structure is helpful to the model, improving both parsing accuracy and coverage. Moreover, we derive novel loss functions by expressing proof net constraints as differentiable functions of our model output, enabling us to train our parser without ground-truth derivations.



References used
https://aclanthology.org/
rate research

Read More

Most of the previous Rhetorical Structure Theory (RST) parsing methods are based on supervised learning such as neural networks, that require an annotated corpus of sufficient size and quality. However, the RST Discourse Treebank (RST-DT), the benchm ark corpus for RST parsing in English, is small due to the costly annotation of RST trees. The lack of large annotated training data causes poor performance especially in relation labeling. Therefore, we propose a method for improving neural RST parsing models by exploiting silver data, i.e., automatically annotated data. We create large-scale silver data from an unlabeled corpus by using a state-of-the-art RST parser. To obtain high-quality silver data, we extract agreement subtrees from RST trees for documents built using the RST parsers. We then pre-train a neural RST parser with the obtained silver data and fine-tune it on the RST-DT. Experimental results show that our method achieved the best micro-F1 scores for Nuclearity and Relation at 75.0 and 63.2, respectively. Furthermore, we obtained a remarkable gain in the Relation score, 3.0 points, against the previous state-of-the-art parser.
We propose a novel framework to train models to classify acceptability of responses generated by natural language generation (NLG) models, improving upon existing sentence transformation and model-based approaches. An NLG response is considered accep table if it is both semantically correct and grammatical. We don't make use of any human references making the classifiers suitable for runtime deployment. Training data for the classifiers is obtained using a 2-stage approach of first generating synthetic data using a combination of existing and new model-based approaches followed by a novel validation framework to filter and sort the synthetic data into acceptable and unacceptable classes. Our 2-stage approach adapts to a wide range of data representations and does not require additional data beyond what the NLG models are trained on. It is also independent of the underlying NLG model architecture, and is able to generate more realistic samples close to the distribution of the NLG model-generated responses. We present results on 5 datasets (WebNLG, Cleaned E2E, ViGGO, Alarm, and Weather) with varying data representations. We compare our framework with existing techniques that involve synthetic data generation using simple sentence transformations and/or model-based techniques, and show that building acceptability classifiers using data that resembles the generation model outputs followed by a validation framework outperforms the existing techniques, achieving state-of-the-art results. We also show that our techniques can be used in few-shot settings using self-training.
Chinese character decomposition has been used as a feature to enhance Machine Translation (MT) models, combining radicals into character and word level models. Recent work has investigated ideograph or stroke level embedding. However, questions remai n about different decomposition levels of Chinese character representations, radical and strokes, best suited for MT. To investigate the impact of Chinese decomposition embedding in detail, i.e., radical, stroke, and intermediate levels, and how well these decompositions represent the meaning of the original character sequences, we carry out analysis with both automated and human evaluation of MT. Furthermore, we investigate if the combination of decomposed Multiword Expressions (MWEs) can enhance the model learning. MWE integration into MT has seen more than a decade of exploration. However, decomposed MWEs has not previously been explored.
We describe a span-level supervised attention loss that improves compositional generalization in semantic parsers. Our approach builds on existing losses that encourage attention maps in neural sequence-to-sequence models to imitate the output of cla ssical word alignment algorithms. Where past work has used word-level alignments, we focus on spans; borrowing ideas from phrase-based machine translation, we align subtrees in semantic parses to spans of input sentences, and encourage neural attention mechanisms to mimic these alignments. This method improves the performance of transformers, RNNs, and structured decoders on three benchmarks of compositional generalization.
Neural approaches to natural language generation in task-oriented dialogue have typically required large amounts of annotated training data to achieve satisfactory performance, especially when generating from compositional inputs. To address this iss ue, we show that self-training enhanced with constrained decoding yields large gains in data efficiency on a conversational weather dataset that employs compositional meaning representations. In particular, our experiments indicate that self-training with constrained decoding can enable sequence-to-sequence models to achieve satisfactory quality using vanilla decoding with five to ten times less data than with ordinary supervised baseline; moreover, by leveraging pretrained models, data efficiency can be increased further to fifty times. We confirm the main automatic results with human evaluations and show that they extend to an enhanced, compositional version of the E2E dataset. The end result is an approach that makes it possible to achieve acceptable performance on compositional NLG tasks using hundreds rather than tens of thousands of training samples.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا