Do you want to publish a course? Click here

NAIST English-to-Japanese Simultaneous Translation System for IWSLT 2021 Simultaneous Text-to-text Task

NAIST نظام الترجمة الفورية الإنجليزية إلى اليابانية ل IWSLT 2021 المهمة النصية المتزامنة للنص

381   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes NAIST's system for the English-to-Japanese Simultaneous Text-to-text Translation Task in IWSLT 2021 Evaluation Campaign. Our primary submission is based on wait-k neural machine translation with sequence-level knowledge distillation to encourage literal translation.



References used
https://aclanthology.org/
rate research

Read More

This paper describes the submission of the NiuTrans end-to-end speech translation system for the IWSLT 2021 offline task, which translates from the English audio to German text directly without intermediate transcription. We use the Transformer-based model architecture and enhance it by Conformer, relative position encoding, and stacked acoustic and textual encoding. To augment the training data, the English transcriptions are translated to German translations. Finally, we employ ensemble decoding to integrate the predictions from several models trained with the different datasets. Combining these techniques, we achieve 33.84 BLEU points on the MuST-C En-De test set, which shows the enormous potential of the end-to-end model.
For Japanese-to-English translation, zero pronouns in Japanese pose a challenge, since the model needs to infer and produce the corresponding pronoun in the target side of the English sentence. However, although fully resolving zero pronouns often ne eds discourse context, in some cases, the local context within a sentence gives clues to the inference of the zero pronoun. In this study, we propose a data augmentation method that provides additional training signals for the translation model to learn correlations between local context and zero pronouns. We show that the proposed method significantly improves the accuracy of zero pronoun translation with machine translation experiments in the conversational domain.
We describe our submission to the IWSLT 2021 shared task on simultaneous text-to-text English-German translation. Our system is based on the re-translation approach where the agent re-translates the whole source prefix each time it receives a new sou rce token. This approach has the advantage of being able to use a standard neural machine translation (NMT) inference engine with beam search, however, there is a risk that incompatibility between successive re-translations will degrade the output. To improve the quality of the translations, we experiment with various approaches: we use a fixed size wait at the beginning of the sentence, we use a language model score to detect translatable units, and we apply dynamic masking to determine when the translation is unstable. We find that a combination of dynamic masking and language model score obtains the best latency-quality trade-off.
This paper describes Maastricht University's participation in the IWSLT 2021 multilingual speech translation track. The task in this track is to build multilingual speech translation systems in supervised and zero-shot directions. Our primary system is an end-to-end model that performs both speech transcription and translation. We observe that the joint training for the two tasks is complementary especially when the speech translation data is scarce. On the source and target side, we use data augmentation and pseudo-labels respectively to improve the performance of our systems. We also introduce an ensembling technique that consistently improves the quality of transcriptions and translations. The experiments show that the end-to-end system is competitive with its cascaded counterpart especially in zero-shot conditions.
In this paper, we describe Zhejiang University's submission to the IWSLT2021 Multilingual Speech Translation Task. This task focuses on speech translation (ST) research across many non-English source languages. Participants can decide whether to work on constrained systems or unconstrained systems which can using external data. We create both cascaded and end-to-end speech translation constrained systems, using the provided data only. In the cascaded approach, we combine Conformer-based automatic speech recognition (ASR) with the Transformer-based neural machine translation (NMT). Our end-to-end direct speech translation systems use ASR pretrained encoder and multi-task decoders. The submitted systems are ensembled by different cascaded models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا